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COSMO Model 

•  Regional weather and climate prediction model 

•  Community model 

•  O(70) universities and research institutes 

•  Operational at 7 national weather services 

Figure: Ulrich Schättler 



Model applications 

COSMO-7  
6.6 km gridspacing 
3 x per day 
72 h forecast 

COSMO-2  
2.2 km gridspacing 
7 x per day 33 h forecast 
1 x per day 45 h forecast 
 

ECMWF-Modell  
16 km gridspacing 
2 x per day 
10 day forecast 
 



Production with COSMO @ CSCS 

Cray XE6 (Albis/Lema) 
MeteoSwiss operational system 
~15 Mio core hours / year 

Cray XE6 (Rosa) 
Research system 
~15-20 Mio core hours / year 



Future applications 



Initialization 
 
 
 
 
 
 
 
 
 
 
 
Cleanup 

Boundary conditions 
Physics 
Dynamics 
Data assimilation 
Relaxation 
Diagnostics 
Input / Output 

COSMO Workflow 

Properties 

•  PDEs 

•  Finite diferences 

•  Structured grid 

•  Sequential workflow Δt 



Code lines and runtime 

•  300’000 lines of Fortran 90 code 

% lines of code % runtime 



Approach 

•  Dynamics 
•  40k lines, 60% runtime 
•  Few developers 
•  Strongly memory bandwidth bound 

 

Aggressive rewrite 
-  Data structures 
-  C++ 
-  DSEL 
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Key algorithmic motifs 

1.  Finite difference stencil 
computations 

•  Focus on horizontal IJ-plane 
accesses 

•  No loop carried dependencies 

 

 

2.  Tri-diagonal solves 
•  vertical K-direction pencils 

•  Loop carried dependencies in K 
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Code example 

•  Solution of tridiagonal linear system 

•  Typical for implicit schemes (advection, diffusion, radiation, …) 

•  Abundant and performance critical in many dynamical cores 



COSMO Version •  Algorithm: TDMA 
•  Language: Fortran 
•  Grid: Structured 

Data layout: (i,j,k) 
•  Parallelization: MPI in (i,j) 
•  Loop order: (jki) 
•  Blocking: (j) 
•  Vectorization: (i) 
•  Directives: NEC 
•  … 



Optimized CPU Version •  Algorithm: TDMA 
•  Language: Fortran 
•  Grid: Structured 
•  Data layout: (k,j,i) 
•  Parallelization: Node in 

(i,j) and Core in (i,j) 
•  Loop order: (ijijk) 
•  Blocking: (i,j) 
•  No vectorization 
•  Directives: OpenMP 
•  … 



Optimized GPU Version •  Algorithm: TDMA 
•  Language: Fortran 
•  Grid: Structured 
•  Data layout: (i,j,k) 
•  Parallelization: Nodes (i,j) 

and Blocks (i,j) 
•  Loop order: (ijijk) 
•  No Blocking 
•  Vectorization: SIMD 

Threads (i,j) 
•  Directives: OpenACC 
•  … 



Learnings 

•  No separation of concerns Code is a mix of mathematical 
model, numerical discretization, solution algorithm, and 
hardware dependent implementation details 

•  Optimizations are hardware dependent and increase code 
complexity 

•  Consequences 

•  Hard to achieve performance portability with a single 
source code! 

•  Hard to understand and modify 
•  Hard to validate and debug 
•  Hard to re-use 



Easy way out? 

•  Can we replace the 
tridiagonal solve with 
a efficient, hardware specific 
implementation or library 
call? 

•  Not really! 
•  Cost of moving the data excessive 
•  No single hotspot (flat profile) 
•  Amdahl’s law 

•  Basic entities are the prognostic variables (ρ, u, v, w, θ, 
qx, …) and we perform a series of expensive operations 
(advection, diffusion, physics, …) on them every timestep 

✗ 



Acceleration with GPUs? 

•  Stencils = low FLOP count per load/store 

•  Transfer of data on each timestep too expensive 

All code which touches the prognostic variables 
on every timestep has to be ported 

Part Time/Δt 
Dynamics 172 ms 
Physics 36 ms 
Total 253 ms 

vs 
118 ms 

Transfer of ten 
prognostic variables  

* § 



Solutions? 

How can we achieve performance portability with COSMO? 

•  Good compromise (if it exists!) 

•  Several efficient source codes 
 
•  Separate model and algorithm from hardware specific 

implementation and optimization 

Challenging computer science problem! 



STELLA Library 

•  Domain specific (embedded) language (DSEL) 
•  C++ host language 
•  Implemented using template meta-programming 
 

Fortran 



STELLA usage 

•  Remove loops and data structures from user code 



STELLA usage 



STELLA backends 

•  x86 CPU (OpenMP, kji-storage) 
•  Factor 1.5x – 1.8x faster than original code (on SB) 
•  No explicit use of vector instructions (up to 30% 

improvement) 

•  NVIDIA GPU (CUDA, ijk-storage) 
•  CPU vs. GPU is a factor 3.4x faster (SB vs. K20x) 
•  Ongoing performance optimization 

•  … 

•  Possible to switch backend by modifying a single line 



Separation of concerns 

User code 

Libraries (MPI, NetCDF, grib) 

OS 

User code 

Libraries (MPI, NetCDF, grib) 

x86 
backend 

STELLA Library 

GPU 
backend … 

OS 



Approach 

•  Dynamics 
•  40k lines, 60% runtime 
•  Few developers 
•  Strongly memory bandwidth bound 

•  Physics & Assimilation 
•  130k lines, 25% runtime 
•  Several developers 
•  “Plug-in” from other models 
•  Less memory bandwidth bound 

 

Aggressive rewrite 
-  Data structures 
-  C++ 
-  DSEL 

Port to GPU 
-  keep source 
-  directives 



Setup 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cleanup 

Implementation 

Input 
Physics 

Dynamics  src_runge_kutta.f90 

Relaxation  src_relaxation.f90 

Assimilation 
Halo-update 
Diagnostics 

Output 

 

Δt 

OpenACC 

OpenACC 

STELLA Library 

Interface 

Interface 

Copy to GPU 

Copy from GPU 

  Interface 



Current status 
•  Branch of COSMO running on GPU-hardware 
•  Regular runs (00 UTC and 12 UTC) 
•  Full operational chain 

(plots delivered into visualization software) 
•  Almost full featured, missing features in progress 



Speedup 

4x 

3x 

2x 

1x 

Cray XE6 
(Nov 2011) 

Cray XC30 hybrid 
(Nov 2013) 

Cray XK7 
(Nov 2012) 

1.77x 

1.41x 

Cray XC30 
(Nov 2012) 

1.35x 

1.49x 

1.67x 3.36x 

Current production code 
New code 



Energy (kWh/member) 

6.0 

4.5 

3.0 

1.5 

Cray XE6 
(Nov 2011) 

Cray XC30 hybrid 
(Nov 2013) 

Cray XK7 
(Nov 2012) 

2.51x 

1.41x 

Cray XC30 
(Nov 2012) 

1.49x 

1.75x 

2.64x 

6.89x 

Current production code 
New code 

0.0 



Learnings 

•  Underestimated effort to integrate technologies 
(C++/CUDA with Fortran/OpenACC, GPU and CPU) 

•  Many technologies were/are not ready 
(e.g. robust CUDA/OpenACC compilers, efficient G2G, …) 

•  Asynchronous communication not (yet) leveraged 

•  Underestimated complexity of heterogeneous code and the 
many use cases 

•  GPU Porting is accessible to domain scientists 
(both with STELLA and OpenACC) 



Next steps 

•  Upgrade to latest model version 

•  Bring developments back to trunk 

•  Improve feature completeness 

•  Next version of STELLA 



Conclusions 

•  Changing hardware architectures require (continually) 
adapting our codes 

•  Model codes are growing in length and complexity 

•  No consensus has emerged to deliver both high 
performance with high programmer productivity 

•  DSLs can help by… 
•  freeing model developer from implementation details 
•  retaining efficiency with single source code 
•  making our codes more reusable and adaptable 
•  joining efforts 

•  The implementation of COSMO dynamics demonstrates that 
this can work! 



FAQ 

“Climate change is so important, that our compute center will not 
buy a machine which does not work for our codes!” 
 
“A master / PhD student will not be able to work with this code!” 
 
“But we all know Fortran and don’t know C++!” 
 
“A new compiler will be able to do this!” 


