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COSMO Model

* Regional weather and climate prediction model
« Community model
« O(70) universities and research institutes

« Operational at 7 national weather services

Roshydromet (Moscow, Russia),

COSMO NWP-Applications
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Y Model applications

ECMWF-Modell COSMO-7 COSMO-2
16 km gridspacing 6.6 km gridspacing 2.2 km gridspacing
2 x per day 3 x per day 7 x per day 33 h forecast

72 h forecast 1 x per day 45 h forecast

10 day forecast




O

Production with COSMO @ CSCS

Cray XEG6 (Albis/Lema) Cray XE6 (Rosa)
MeteoSwiss operational system Research system
~15 Mio core hours / year ~15-20 Mio core hours / year




¥ Future applications
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¥  COSMO Workflow

At

Initialization

AN

[

Boundary conditions
Physics

Dynamics

Data assimilation
Relaxation
Diagnostics

Input / Output

J

Cleanup

Properties

PDEs
Finite diferences
Structured grid

Sequential workflow



¢  Code lines and runtime

e 300’000 lines of Fortran 90 code

% lines of code

11'031; 5%
11079, 5%

12'084; 5%

83'271,37%
25'300; 1%

43'066; 19%

41'548; 18%

B Assimilation
O Dynamics
O Physics

(u @]

3 Structure

B Diagnosis
B Parallelization

% runtime

21.46; 2%
64.98; 6%

102.9; 10%

12.86; 1%

235.7; 22% 644.7; 59%



¥ Approach

« Dynamics N _ _
+ 40k lines, 60% runtime Aggressive rewrite
- Data structures
 Few developers >

- C++

 Strongly memory bandwidth bound - DSEL




¥  Key algorithmic motifs

1. Finite difference stencil
computations K

« Focus on horizontal IJ-plane
accesses

* No loop carried dependencies

2. Tri-diagonal solves
» vertical K-direction pencils

» Loop carried dependencies in K K




¥  Code example

« Solution of tridiagonal linear system

by ¢ 0 T dy
az by o To dy
as b3 “., 3| = d3
. e Ch— ’ '
| 0 a, bn | _:1: n | _dn |

» Typical for implicit schemes (advection, diffusion, radiation, ...)

* Abundant and performance critical in many dynamical cores



¥  COSMO Version

! solve tridiag(a,b,c) * x = d

| pre-computation
do j = jstart, jend

I forward elimination
do k = nk, 2, -1
do 1 = 1start, 1end
| CDIR ON ADB(d)

Algorithm: TDMA
Language: Fortran

Grid: Structured

Data layout: (i,j,k)
Parallelization: MPI in (i,j)
Loop order: (jki)
Blocking: (j)
Vectorization: (i)
Directives: NEC

d(1,j,k) = ( d(1,3,k) - d(1,3,k+1) * c(1,3,k) ) * b(1,],k)

end do

end do

| back substitution
do k = 1, nk-1
do 1 = 1start, 1end
| CDIR ON ADB(x)

x(i,j,k+1) = ali,j, k+1) * x(i,j,k) + d(i,],k+1)

end do
end do

end do




¥ Optimized CPU Versii-

! solve tridiag(a,b,c) * x = d o

| $OMP PARALLEL DO SHARED(x) PRIVATE(a,b,c,d) COLLAH e
do 1b = 1, nblock_1
do jb = 1, nblock_j

| pre-computation

do 1 = 1start_block, 1end block

do j = jstart_block, jend block
! forward elimination

do k = nk, 2, -1 o
d(k,j,1) = ( d(k,j,1) - d(k+1,3,1) * c(k,j,1]

Algorithm: TDMA
Language: Fortran
Grid: Structured

Data layout: (k,j,i)
Parallelization: Node in
(i,j) and Core in (i,))
Loop order: (ijijk)
Blocking: (i,))

No vectorization
Directives: OpenMP

end do

I back substitution
do k = 1, nk-1

x(k+1,3,1) = a(k+1,3,1) * x(k,j,1) + d(k+1,3,1)
end do

end do
end do

end do
end do
'$0OMP END PARALLEL DO




¥  Optimized GPU Versi

! solve tridiag(a,b,c) * x =d
| $ACC DATA COPYIN(a,b,c,d) COPYOUT(x)
| $ACC KERNELS LOOP, GANG(32), WORKER(8)

do 1 1start, 1end
do ] = jstart, jend

| pre-computation

I forward elimination
do k = nk, 2, -1
d(1,7,k) = ( d(1,3,k) - d(1,),k+1) * c(1,7,

end do

| back substitution
do k = 1, nk-1

Algorithm: TDMA
Language: Fortran
Grid: Structured

Data layout: (i,j,k)
Parallelization: Nodes (i,))
and Blocks (i,))

Loop order: (ijijk)

No Blocking
Vectorization: SIMD
Threads (i,))
Directives: OpenACC

x(i,j, k1) = ali,j, k+1) * x(i,j,k) + d(i,],k+1)

end do

end do
end do
'$0OMP END KERNELS LOOPS

I'SACC END DATA




¥  Learnings

* No separation of concerns Code is a mix of mathematical
model, numerical discretization, solution algorithm, and
hardware dependent implementation details

* Optimizations are hardware dependent and increase code
complexity

« Consequences

Hard to achieve performance portability with a single
source code!

Hard to understand and modify

Hard to validate and debug

Hard to re-use



+

Easy way out?

Can we replace the
tridiagonal solve with

a efficient, hardware specific
implementation or library
call?

¥ Tridiagonal
Dynamics
1/0O

Not really!
Cost of moving the data excessive
No single hotspot (flat profile)
Amdahl’s law

Basic entities are the prognostic variables (p, u, v, w, 6,
q,, ---) and we perform a series of expensive operations
(advection, diffusion, physics, ...) on them every timestep



¥  Acceleration with GPUs?

« Stencils = low FLOP count per load/store

« Transfer of data on each timestep too expensive

* Part TimelAt
Dynamics 172 ms
Physics 36 ms
Total 253 ms

VS

§

Transfer of ten
prognostic variables

118 ms

All code which touches the prognostic variables

on every timestep has to be ported




Solutions?

How can we achieve performance portability with COSMO?
« Good compromise (if it exists!)

« Several efficient source codes

| Separate model and algorithm from hardware specific
iImplementation and optimization

Challenging computer science problem!



¥  STELLA Library

« Domain specific (embedded) language (DSEL)
« C++ host language
« Implemented using template meta-programming

Performance

Fortran
C/C++

Domain
Specific
Languages

Productivity Generality

@ python m



STELLA usage

X

DO k = 1, ke
j

DO jstart, jend
DO i istart, iend
data_out(i,j,k) = -4.0_wp * data_in(i,j,k) &
+ data_in(i+1,j,k) + data_in(i-1,j,k) &

+ data_in(i,j+1,k) + data_in(i,j-1,k)

ENDDO
ENDDO
ENDDO

 Remove loops and data structures from user code



¥  STELLA usage

// Laplacian stencil
template<typename TEnv>
struct Laplacian

{
static T Do(Context ctx)
{
ctx[data_out::Center()] =
- (T)4.0 x ctx[data_in::Center()]
+ ctx[data_in::At(iplusl)] + ctx[data_in::At(iminus1)]
+ ctx[data_in::At(jplusl)] + ctx[data_in::At(jminusl)]
}
};

// Apply the Laplacian stencil to domain
StencilCompiler: :Build(
stencil_,
"Laplacian",
calculationDomain,
StencilConfiguration<Real, BlockSize<8,8>>(),
define_loops(
define_sweep<cKIncrement>(
define_stages(
StencilStage<Laplacian,
IJRange<cComplete,9,0,0,0>,
KRange<FullDomain,@,0> >(),




STELLA backends

x86 CPU (OpenMP, kji-storage)
« Factor 1.5x — 1.8x faster than original code (on SB)

* No explicit use of vector instructions (up to 30%
improvement)

NVIDIA GPU (CUDA, ijk-storage)
« CPU vs. GPU is a factor 3.4x faster (SB vs. K20x)
« Ongoing performance optimization

Possible to switch backend by modifying a single line



¥  Separation of concerns

User code

User code STELLA Library

x86 GPU
backend backend

Libraries (MPI, NetCDF, grib)




Approach

Dynamics
* 40k lines, 60% runtime
 Few developers

« Strongly memory bandwidth bound

Physics & Assimilation

130k lines, 25% runtime

Several developers
“Plug-in” from other models
Less memory bandwidth bound

Aggressive rewrite
- Data structures

>

- C++

- DSEL

Port to GPU
» - keep source
- directives




+

At

Implementation

Setup

AN

Input
Physics

Dynamics src_runge_ kutta.fo0

Relaxation src_relaxation.f90

Assimilation

Halo-update - Interface
Diagnostics

Output

J

Cleanup

Copy to GPU
OpenACC

Interface

STELLA Library

Interface

OpenACC

Copy from GPU



Current status

« Branch of COSMO running on GPU-hardware
 Regular runs (00 UTC and 12 UTC)

» Full operational chain
(plots delivered into visualization software)

» Almost full featured, missing features in progress

Model Initial Time Product Domain Field Val. Time Model  ImitialTi me  Product Domain Field Val. Time

OPCODE COSMO-7 [+] 13070812_OPC[+] 2D Plots [~] Europe S EEE T[] Th 12:00 [+] COSMO-7 [+]13070812_935 =] 2D Plots [ Europe [=]7850+FI500  [=]Thu 1200 [7]
COSMO-7 FOREC_AST ) Version: 999 Thu 11 Jul 2013 12UTC COSMO-7 FORECAST Version: 935 Thu 11 Jul 2013 12UTC
500hPa Geopotential Height and 850hPa Temperature 08.07.2013 12UTC +72h 500hPa Geopotential Height and 850hPa Temperature 08.07.2013 12UTC +72h

Geopotential [gpm], level = 500 hPa Mean: 5762.7 gpm
Air Temperature [deg C), level = 850 hPa Mean: 13.1degC
@

Geopotential [gpm], level = 500 hPa
Air Temperature [deg C], level = 850 hPa
C]
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Learnings

 Underestimated effort to integrate technologies
(C++/CUDA with Fortran/OpenACC, GPU and CPU)

« Many technologies were/are not ready
(e.g. robust CUDA/OpenACC compilers, efficient G2G, ...)

« Asynchronous communication not (yet) leveraged

 Underestimated complexity of heterogeneous code and the
many use cases

 GPU Porting is accessible to domain scientists
(both with STELLA and OpenACC)



Next steps

« Upgrade to latest model version
* Bring developments back to trunk
« Improve feature completeness

 Next version of STELLA



Conclusions

« Changing hardware architectures require (continually)
adapting our codes

 Model codes are growing in length and complexity

* No consensus has emerged to deliver both high
performance with high programmer productivity

« DSLs can help by...
- freeing model developer from implementation details
* retaining efficiency with single source code
* making our codes more reusable and adaptable
* joining efforts

« The implementation of COSMO dynamics demonstrates that
this can work!



FAQ

“Climate change is so important, that our compute center will not
buy a machine which does not work for our codes!”

“A master / PhD student will not be able to work with this code!”
“But we all know Fortran and don’t know C++!”

“A new compiler will be able to do this!”



