Schweizerische Eidgenossenschaft Federal Department of Home Affairs FDHA
Confédération suisse Federal Office of Meteorology and Climatology MeteoSwiss

Confederazione Svizzera
Confederaziun svizra

Towards operational implementation of
COSMO on accelerators at MeteoSwiss

CONSORTIUM FOR SMALL SCALE MODELING

HPZC ©€@SMO

Oliver Fuhrerl, Tobias Gysi?, Carlos Osuna?3, Xavier Lapillonne3, Mauro
Bianco?4, Thomas Schulthess?, et al.

' Federal Office of Meteorology and Climatology MeteoSwiss, Switzerland
2 Supercomputing Systems AG, Switzerland
3 Center for Climate Systems Modeling / ETH, Switzerland
4 Swiss National Supercomputing Centre CSCS / ETH, Switzerland

COSMO Model

* Regional weather and climate prediction model
« Community model
« O(70) universities and research institutes

« Operational at 7 national weather services

Roshydromet (Moscow, Russia),

COSMO NWP-Applications

(Offenbach, (2 sai
G : 7
ermany) NMA (Bucharest, Romania):
NEC SX-8R, o ’
SX-9 Still in planning / procurement phase

IMGW (Warsawa, Poland):
SGlI Origin 3800:
uses 88 of 100 nodes

MeteoSwiss:

Cray XT4: COSMO-7 and
COSMO-2 use 980+4 MPI-
Tasks on 246 out of 260 quad
core AMD nodes

ARPA-SIM (Bologna, Italy):
IBM pwr5: up to 160 of 512
nodes at CINECA

USAM (Rome, Italy): COSMO-LEPS (at ECMWF):

HP Linux Cluster .
’ running on ECMWF pwr6 as
XEON biproc quadcore member-state time-critical

System in preparation e
ARPA-SIM (Bologna, Italy): Y prep application

Linux-Intel x86-64 Cluster for
X HNMS (Athens, Greece):
testing (uses 56 of 120 cores) IBM pw(r4: 120 of 256 ngdes

Figure: Ulrich Schattler

Y Model applications

ECMWF-Modell COSMO-7 COSMO-2
16 km gridspacing 6.6 km gridspacing 2.2 km gridspacing
2 x per day 3 x per day 7 x per day 33 h forecast

72 h forecast 1 x per day 45 h forecast

10 day forecast

O

Production with COSMO @ CSCS

Cray XEG6 (Albis/Lema) Cray XE6 (Rosa)
MeteoSwiss operational system Research system
~15 Mio core hours / year ~15-20 Mio core hours / year

¥ Future applications

-
- -
; :
. : » -y
R,
L _t(-
S
-
\4~ “ ¢ {
~ >
A nNc
Conf
Confedgrazione zz€
Conigderaziun svizra

Federal Department of

Federal Office of Meteo

¥ COSMO Workflow

At

Initialization

AN

[

Boundary conditions
Physics

Dynamics

Data assimilation
Relaxation
Diagnostics

Input / Output

J

Cleanup

Properties

PDEs
Finite diferences
Structured grid

Sequential workflow

¢ Code lines and runtime

e 300’000 lines of Fortran 90 code

% lines of code

11'031; 5%
11079, 5%

12'084; 5%

83'271,37%
25'300; 1%

43'066; 19%

41'548; 18%

B Assimilation
O Dynamics
O Physics

(u @]

3 Structure

B Diagnosis
B Parallelization

% runtime

21.46; 2%
64.98; 6%

102.9; 10%

12.86; 1%

235.7; 22% 644.7; 59%

¥ Approach

« Dynamics N _ _
+ 40k lines, 60% runtime Aggressive rewrite
- Data structures
 Few developers >

- C++

 Strongly memory bandwidth bound - DSEL

¥ Key algorithmic motifs

1. Finite difference stencil
computations K

« Focus on horizontal IJ-plane
accesses

* No loop carried dependencies

2. Tri-diagonal solves
» vertical K-direction pencils

» Loop carried dependencies in K K

¥ Code example

« Solution of tridiagonal linear system

by ¢ 0 T dy
az by o To dy
as b3 “., 3| = d3
. e Ch— ’ '
| 0 a, bn | _:1: n | _dn |

» Typical for implicit schemes (advection, diffusion, radiation, ...)

* Abundant and performance critical in many dynamical cores

¥ COSMO Version

! solve tridiag(a,b,c) * x = d

| pre-computation
do j = jstart, jend

I forward elimination
do k = nk, 2, -1
do 1 = 1start, 1end
| CDIR ON ADB(d)

Algorithm: TDMA
Language: Fortran

Grid: Structured

Data layout: (i,j,k)
Parallelization: MPI in (i,j)
Loop order: (jki)
Blocking: (j)
Vectorization: (i)
Directives: NEC

d(1,j,k) = (d(1,3,k) - d(1,3,k+1) * c(1,3,k)) * b(1,],k)

end do

end do

| back substitution
do k = 1, nk-1
do 1 = 1start, 1end
| CDIR ON ADB(x)

x(i,j,k+1) = ali,j, k+1) * x(i,j,k) + d(i,],k+1)

end do
end do

end do

¥ Optimized CPU Versii-

! solve tridiag(a,b,c) * x = d o

| $OMP PARALLEL DO SHARED(x) PRIVATE(a,b,c,d) COLLAH e
do 1b = 1, nblock_1
do jb = 1, nblock_j

| pre-computation

do 1 = 1start_block, 1end block

do j = jstart_block, jend block
! forward elimination

do k = nk, 2, -1 o
d(k,j,1) = (d(k,j,1) - d(k+1,3,1) * c(k,j,1]

Algorithm: TDMA
Language: Fortran
Grid: Structured

Data layout: (k,j,i)
Parallelization: Node in
(i,j) and Core in (i,))
Loop order: (ijijk)
Blocking: (i,))

No vectorization
Directives: OpenMP

end do

I back substitution
do k = 1, nk-1

x(k+1,3,1) = a(k+1,3,1) * x(k,j,1) + d(k+1,3,1)
end do

end do
end do

end do
end do
'$0OMP END PARALLEL DO

¥ Optimized GPU Versi

! solve tridiag(a,b,c) * x =d
| $ACC DATA COPYIN(a,b,c,d) COPYOUT(x)
| $ACC KERNELS LOOP, GANG(32), WORKER(8)

do 1 1start, 1end
do] = jstart, jend

| pre-computation

I forward elimination
do k = nk, 2, -1
d(1,7,k) = (d(1,3,k) - d(1,),k+1) * c(1,7,

end do

| back substitution
do k = 1, nk-1

Algorithm: TDMA
Language: Fortran
Grid: Structured

Data layout: (i,j,k)
Parallelization: Nodes (i,))
and Blocks (i,))

Loop order: (ijijk)

No Blocking
Vectorization: SIMD
Threads (i,))
Directives: OpenACC

x(i,j, k1) = ali,j, k+1) * x(i,j,k) + d(i,],k+1)

end do

end do
end do
'$0OMP END KERNELS LOOPS

I'SACC END DATA

¥ Learnings

* No separation of concerns Code is a mix of mathematical
model, numerical discretization, solution algorithm, and
hardware dependent implementation details

* Optimizations are hardware dependent and increase code
complexity

« Consequences

Hard to achieve performance portability with a single
source code!

Hard to understand and modify

Hard to validate and debug

Hard to re-use

+

Easy way out?

Can we replace the
tridiagonal solve with

a efficient, hardware specific
implementation or library
call?

¥ Tridiagonal
Dynamics
1/0O

Not really!
Cost of moving the data excessive
No single hotspot (flat profile)
Amdahl’s law

Basic entities are the prognostic variables (p, u, v, w, 6,
q,, ---) and we perform a series of expensive operations
(advection, diffusion, physics, ...) on them every timestep

¥ Acceleration with GPUs?

« Stencils = low FLOP count per load/store

« Transfer of data on each timestep too expensive

* Part TimelAt
Dynamics 172 ms
Physics 36 ms
Total 253 ms

VS

§

Transfer of ten
prognostic variables

118 ms

All code which touches the prognostic variables

on every timestep has to be ported

Solutions?

How can we achieve performance portability with COSMO?
« Good compromise (if it exists!)

« Several efficient source codes

| Separate model and algorithm from hardware specific
iImplementation and optimization

Challenging computer science problem!

¥ STELLA Library

« Domain specific (embedded) language (DSEL)
« C++ host language
« Implemented using template meta-programming

Performance

Fortran
C/C++

Domain
Specific
Languages

Productivity Generality

@ python m

STELLA usage

X

DO k = 1, ke
j

DO jstart, jend
DO i istart, iend
data_out(i,j,k) = -4.0_wp * data_in(i,j,k) &
+ data_in(i+1,j,k) + data_in(i-1,j,k) &

+ data_in(i,j+1,k) + data_in(i,j-1,k)

ENDDO
ENDDO
ENDDO

 Remove loops and data structures from user code

¥ STELLA usage

// Laplacian stencil
template<typename TEnv>
struct Laplacian

{
static T Do(Context ctx)
{
ctx[data_out::Center()] =
- (T)4.0 x ctx[data_in::Center()]
+ ctx[data_in::At(iplusl)] + ctx[data_in::At(iminus1)]
+ ctx[data_in::At(jplusl)] + ctx[data_in::At(jminusl)]
}
};

// Apply the Laplacian stencil to domain
StencilCompiler: :Build(
stencil_,
"Laplacian",
calculationDomain,
StencilConfiguration<Real, BlockSize<8,8>>(),
define_loops(
define_sweep<cKIncrement>(
define_stages(
StencilStage<Laplacian,
IJRange<cComplete,9,0,0,0>,
KRange<FullDomain,@,0> >(),

STELLA backends

x86 CPU (OpenMP, kji-storage)
« Factor 1.5x — 1.8x faster than original code (on SB)

* No explicit use of vector instructions (up to 30%
improvement)

NVIDIA GPU (CUDA, ijk-storage)
« CPU vs. GPU is a factor 3.4x faster (SB vs. K20x)
« Ongoing performance optimization

Possible to switch backend by modifying a single line

¥ Separation of concerns

User code

User code STELLA Library

x86 GPU
backend backend

Libraries (MPI, NetCDF, grib)

Approach

Dynamics
* 40k lines, 60% runtime
 Few developers

« Strongly memory bandwidth bound

Physics & Assimilation

130k lines, 25% runtime

Several developers
“Plug-in” from other models
Less memory bandwidth bound

Aggressive rewrite
- Data structures

>

- C++

- DSEL

Port to GPU
» - keep source
- directives

+

At

Implementation

Setup

AN

Input
Physics

Dynamics src_runge_ kutta.fo0

Relaxation src_relaxation.f90

Assimilation

Halo-update - Interface
Diagnostics

Output

J

Cleanup

Copy to GPU
OpenACC

Interface

STELLA Library

Interface

OpenACC

Copy from GPU

Current status

« Branch of COSMO running on GPU-hardware
 Regular runs (00 UTC and 12 UTC)

» Full operational chain
(plots delivered into visualization software)

» Almost full featured, missing features in progress

Model Initial Time Product Domain Field Val. Time Model ImitialTi me Product Domain Field Val. Time

OPCODE COSMO-7 [+] 13070812_OPC[+] 2D Plots [~] Europe S EEE T[] Th 12:00 [+] COSMO-7 [+]13070812_935 =] 2D Plots [Europe [=]7850+FI500 [=]Thu 1200 [7]
COSMO-7 FOREC_AST) Version: 999 Thu 11 Jul 2013 12UTC COSMO-7 FORECAST Version: 935 Thu 11 Jul 2013 12UTC
500hPa Geopotential Height and 850hPa Temperature 08.07.2013 12UTC +72h 500hPa Geopotential Height and 850hPa Temperature 08.07.2013 12UTC +72h

Geopotential [gpm], level = 500 hPa Mean: 5762.7 gpm
Air Temperature [deg C), level = 850 hPa Mean: 13.1degC
@

Geopotential [gpm], level = 500 hPa
Air Temperature [deg C], level = 850 hPa
C]

+

4x

3X

2X

1x

@& Current production code

Speedup == New code
A D
1.67x 3.36x
n__
S
1.77x
1.49x
O o
T1 41X 1.35x
— G
Cray XEG Cray XK7 Cray XC30 Cray XC30 hybrid
(Nov 2011) (Nov 2012) (Nov 2012) (Nov 2013)

6.0

4.5

3.0

1.5

0.0

@& Current production code

Energy (kWh/member) = newcode

Cray XEG6 Cray XK7 Cray XC30 Cray XC30 hybrid
(Nov 2011) (Nov 2012) (Nov 2012) (Nov 2013)
—

1.41x 1.75x
o Y
s Y 6.89x
2 51x 1.49x
o Y
M 2 B4x
V "

Learnings

 Underestimated effort to integrate technologies
(C++/CUDA with Fortran/OpenACC, GPU and CPU)

« Many technologies were/are not ready
(e.g. robust CUDA/OpenACC compilers, efficient G2G, ...)

« Asynchronous communication not (yet) leveraged

 Underestimated complexity of heterogeneous code and the
many use cases

 GPU Porting is accessible to domain scientists
(both with STELLA and OpenACC)

Next steps

« Upgrade to latest model version
* Bring developments back to trunk
« Improve feature completeness

 Next version of STELLA

Conclusions

« Changing hardware architectures require (continually)
adapting our codes

 Model codes are growing in length and complexity

* No consensus has emerged to deliver both high
performance with high programmer productivity

« DSLs can help by...
- freeing model developer from implementation details
* retaining efficiency with single source code
* making our codes more reusable and adaptable
* joining efforts

« The implementation of COSMO dynamics demonstrates that
this can work!

FAQ

“Climate change is so important, that our compute center will not
buy a machine which does not work for our codes!”

“A master / PhD student will not be able to work with this code!”
“But we all know Fortran and don’t know C++!”

“A new compiler will be able to do this!”

