
Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

Towards operational implementation of
COSMO on accelerators at MeteoSwiss

Oliver Fuhrer1, Tobias Gysi2, Carlos Osuna3, Xavier Lapillonne3, Mauro

Bianco4, Thomas Schulthess4, et al.

1 Federal Office of Meteorology and Climatology MeteoSwiss, Switzerland
2 Supercomputing Systems AG, Switzerland

3 Center for Climate Systems Modeling / ETH, Switzerland
4 Swiss National Supercomputing Centre CSCS / ETH, Switzerland

COSMO Model

•  Regional weather and climate prediction model

•  Community model

•  O(70) universities and research institutes

•  Operational at 7 national weather services

Figure: Ulrich Schättler

Model applications

COSMO-7
6.6 km gridspacing
3 x per day
72 h forecast

COSMO-2
2.2 km gridspacing
7 x per day 33 h forecast
1 x per day 45 h forecast

ECMWF-Modell
16 km gridspacing
2 x per day
10 day forecast

Production with COSMO @ CSCS

Cray XE6 (Albis/Lema)
MeteoSwiss operational system
~15 Mio core hours / year

Cray XE6 (Rosa)
Research system
~15-20 Mio core hours / year

Future applications

Initialization

Cleanup

Boundary conditions
Physics
Dynamics
Data assimilation
Relaxation
Diagnostics
Input / Output

COSMO Workflow

Properties

•  PDEs

•  Finite diferences

•  Structured grid

•  Sequential workflow Δt

Code lines and runtime

•  300’000 lines of Fortran 90 code

% lines of code % runtime

Approach

•  Dynamics
•  40k lines, 60% runtime
•  Few developers
•  Strongly memory bandwidth bound

Aggressive rewrite
-  Data structures
-  C++
-  DSEL

K

I

J

Key algorithmic motifs

1.  Finite difference stencil
computations

•  Focus on horizontal IJ-plane
accesses

•  No loop carried dependencies

2.  Tri-diagonal solves
•  vertical K-direction pencils

•  Loop carried dependencies in K

K

I

J

Code example

•  Solution of tridiagonal linear system

•  Typical for implicit schemes (advection, diffusion, radiation, …)

•  Abundant and performance critical in many dynamical cores

COSMO Version •  Algorithm: TDMA
•  Language: Fortran
•  Grid: Structured

Data layout: (i,j,k)
•  Parallelization: MPI in (i,j)
•  Loop order: (jki)
•  Blocking: (j)
•  Vectorization: (i)
•  Directives: NEC
•  …

Optimized CPU Version •  Algorithm: TDMA
•  Language: Fortran
•  Grid: Structured
•  Data layout: (k,j,i)
•  Parallelization: Node in

(i,j) and Core in (i,j)
•  Loop order: (ijijk)
•  Blocking: (i,j)
•  No vectorization
•  Directives: OpenMP
•  …

Optimized GPU Version •  Algorithm: TDMA
•  Language: Fortran
•  Grid: Structured
•  Data layout: (i,j,k)
•  Parallelization: Nodes (i,j)

and Blocks (i,j)
•  Loop order: (ijijk)
•  No Blocking
•  Vectorization: SIMD

Threads (i,j)
•  Directives: OpenACC
•  …

Learnings

•  No separation of concerns Code is a mix of mathematical
model, numerical discretization, solution algorithm, and
hardware dependent implementation details

•  Optimizations are hardware dependent and increase code
complexity

•  Consequences

•  Hard to achieve performance portability with a single
source code!

•  Hard to understand and modify
•  Hard to validate and debug
•  Hard to re-use

Easy way out?

•  Can we replace the
tridiagonal solve with
a efficient, hardware specific
implementation or library
call?

•  Not really!
•  Cost of moving the data excessive
•  No single hotspot (flat profile)
•  Amdahl’s law

•  Basic entities are the prognostic variables (ρ, u, v, w, θ,
qx, …) and we perform a series of expensive operations
(advection, diffusion, physics, …) on them every timestep

✗

Acceleration with GPUs?

•  Stencils = low FLOP count per load/store

•  Transfer of data on each timestep too expensive

All code which touches the prognostic variables
on every timestep has to be ported

Part Time/Δt
Dynamics 172 ms
Physics 36 ms
Total 253 ms

vs
118 ms

Transfer of ten
prognostic variables

* §

Solutions?

How can we achieve performance portability with COSMO?

•  Good compromise (if it exists!)

•  Several efficient source codes

•  Separate model and algorithm from hardware specific

implementation and optimization

Challenging computer science problem!

STELLA Library

•  Domain specific (embedded) language (DSEL)
•  C++ host language
•  Implemented using template meta-programming

Fortran

STELLA usage

•  Remove loops and data structures from user code

STELLA usage

STELLA backends

•  x86 CPU (OpenMP, kji-storage)
•  Factor 1.5x – 1.8x faster than original code (on SB)
•  No explicit use of vector instructions (up to 30%

improvement)

•  NVIDIA GPU (CUDA, ijk-storage)
•  CPU vs. GPU is a factor 3.4x faster (SB vs. K20x)
•  Ongoing performance optimization

•  …

•  Possible to switch backend by modifying a single line

Separation of concerns

User code

Libraries (MPI, NetCDF, grib)

OS

User code

Libraries (MPI, NetCDF, grib)

x86
backend

STELLA Library

GPU
backend …

OS

Approach

•  Dynamics
•  40k lines, 60% runtime
•  Few developers
•  Strongly memory bandwidth bound

•  Physics & Assimilation
•  130k lines, 25% runtime
•  Several developers
•  “Plug-in” from other models
•  Less memory bandwidth bound

Aggressive rewrite
-  Data structures
-  C++
-  DSEL

Port to GPU
-  keep source
-  directives

Setup

Cleanup

Implementation

Input
Physics

Dynamics src_runge_kutta.f90

Relaxation src_relaxation.f90

Assimilation
Halo-update
Diagnostics

Output

Δt

OpenACC

OpenACC

STELLA Library

Interface

Interface

Copy to GPU

Copy from GPU

 Interface

Current status
•  Branch of COSMO running on GPU-hardware
•  Regular runs (00 UTC and 12 UTC)
•  Full operational chain

(plots delivered into visualization software)
•  Almost full featured, missing features in progress

Speedup

4x

3x

2x

1x

Cray XE6
(Nov 2011)

Cray XC30 hybrid
(Nov 2013)

Cray XK7
(Nov 2012)

1.77x

1.41x

Cray XC30
(Nov 2012)

1.35x

1.49x

1.67x 3.36x

Current production code
New code

Energy (kWh/member)

6.0

4.5

3.0

1.5

Cray XE6
(Nov 2011)

Cray XC30 hybrid
(Nov 2013)

Cray XK7
(Nov 2012)

2.51x

1.41x

Cray XC30
(Nov 2012)

1.49x

1.75x

2.64x

6.89x

Current production code
New code

0.0

Learnings

•  Underestimated effort to integrate technologies
(C++/CUDA with Fortran/OpenACC, GPU and CPU)

•  Many technologies were/are not ready
(e.g. robust CUDA/OpenACC compilers, efficient G2G, …)

•  Asynchronous communication not (yet) leveraged

•  Underestimated complexity of heterogeneous code and the
many use cases

•  GPU Porting is accessible to domain scientists
(both with STELLA and OpenACC)

Next steps

•  Upgrade to latest model version

•  Bring developments back to trunk

•  Improve feature completeness

•  Next version of STELLA

Conclusions

•  Changing hardware architectures require (continually)
adapting our codes

•  Model codes are growing in length and complexity

•  No consensus has emerged to deliver both high
performance with high programmer productivity

•  DSLs can help by…
•  freeing model developer from implementation details
•  retaining efficiency with single source code
•  making our codes more reusable and adaptable
•  joining efforts

•  The implementation of COSMO dynamics demonstrates that
this can work!

FAQ

“Climate change is so important, that our compute center will not
buy a machine which does not work for our codes!”

“A master / PhD student will not be able to work with this code!”

“But we all know Fortran and don’t know C++!”

“A new compiler will be able to do this!”

