CESM Load Balancing Development Optimizer Study

Soudeh Kamali, University of Wyoming Co-Intern: Thomas Johnson III, Elizabeth City State University Mentors: Sheri Mickelson, Brian Dobbins, John Dennis

July 29, 2020

- Introduction
- Project Goals
- Optimizer study
- Case Study
- Results
- Conclusions & Future Work

Coupled versus **standalone** approach:

- ✓ Time scales
- ✓ Mesh requirements
- ✓ Numerical methods
- ✓ Use of legacy codes

Modeling the climate system-Karl and Trenberth 2003.

Community Earth System Model (CESM)

Challenges

Reaching high performance is challenging with CESM:

- X Size of the problem
- X Multi-component nature
- X Scientific requirements

CESM Processor and timing layout - Sheri Mickelson 2020.

Motivation

Saves lots of core hours!!!

Unbalanced Layout

Balanced Layout

CESM component scalability plots - Sheri Mickelson 2020.

NCAR CESM LOAD BALANCING PROJECT.

- Introduction
- Project Goals
- Optimizer Study
- Case Study
- * Results
- Conclusions & Future Work

Project Goals

Study the potential automatic load balancing capability for CESM.

- Introduction
- Project Goals
- Optimizer Study
- Case Study
- * Results
- Conclusions & Future Work

Mixed Integer Linear Programming (MILP)

Optimizer Options

Selected open source optimizers:

1) PuLP

- ✓ COIN-OR (CBC) Branch and Cut
- ✓ GNU Linear Programming Kit (GLPK) Branch and Bound

2) SciPy
✓ CVXOPT - (GLPK) - Branch and Bound

- Introduction
- Project Goals
- Optimizer Study
- Case Study
- * Results
- Conclusions & Future Work

5-day Runs

Compset	Scientific Grid	Mesh Resolution
B1850	f09_g17	1deg ATM = 192 x 288 x 32
		1deg OCN = 320 x 394 x 60

- Introduction
- Project Goals
- Optimizer Study
- Case Study
- Results
- Conclusions & Future Work

Performance Curves

B1850-1degATM/1degOCN (5 day run)

NCAR CESM LOAD BALANCING PROJECT.

Optimizer Layouts

B1850-1degATM/1degOCN (5 day run)

Total Number of Processors	288	576	7
OCN	72	144	14
ATM	216	432	5
LND	144	322	4
ICE	39	75	72
WAV	33	35	3

NCAR CESM LOAD BALANCING PROJECT.

Comparison with Baseline

B1850-1degATM/1degOCN (5 day run)

Relative to Baseline (720 -core run)					
	288	576	720		
Total time (s)	1.94	1.06	1.00		
Cost/year	0.78	0.85	1.00		

576-core vs 720 -core 40.23 secs/day vs 38.04 secs/day 6% slower but 15% more efficient!

Layouts

B1850-1degATM/1degOCN (5 day run)

Unbalanced Layout

Balanced Layout

- Introduction
- Project Goals
- Optimizer Study
- Case Studies
- * Results
- Conclusions & Future Work

Conclusions and Future Work

- \checkmark Researched and implemented candidate optimizers.
- ✓ Benchmarked the different optimizers for a typical and widely used compsets.

Future Work

- \checkmark Use the Load balancer and optimizer on more cases.
- \checkmark Add other components (GLC and River) to the optimization problem.
- \checkmark Research on more accurate algorithms for creating scalability curves.
- \checkmark Try modeling the optimization problem as a non-linear problem.

ACKNOWLEDGMENT

Mentors

Sheri Mickelson Brian Dobbins John Dennis

Co-Intern Thomas Johnson III

CODE team

AJ Lauer Virginia Do Jerry Cyccone Jessica Hoopengardner

THANK YOU!!

Soudeh Kamali skamali@uwyo.edu

Sarich, J., Edwards, J., CIME Load Balancing Tool, 2017, GitHub Repository, https://github.com/ESMCI/cime/tree/master/tools/load_balancing_tool

NCAR CESM LOAD BALANCING PROJECT.