
Formatting Fortran in the ROSE
Compiler

Skylar Neuendorff
SIParCS Program 2020

Rice University Class of 2021

Introduction

The ROSE Compiler

- The ROSE Compiler is a
source-to-source
translator

- Has resources for tools
that can translate,
analyze, and parse
through C, C++, and
Fortran files.

The ROSE Compiler

- Problem: The Fortran
translator/compiler in
ROSE loses a lot of the
original formatting of the
file.

- Goal: Work towards
building a Fortran-Aware
backend that preserves
formatting.

Building ROSE

Obstacles
- Biggest obstacle: ROSE lacks clear, up-to-date

documentation of the versions of its dependencies
that it is compatible with (e.g. Boost, GNU)

- Often, errors caused by incompatible dependencies
are vague and unclear, so it took a lot of time to
resolve them.

- Inability to find libraries even though they existed
on the machine.

- Also had to work out the correct paths that had to be
added to the Library Path, which again, are poorly
documented in ROSE.

Successful Build For ROSE
Build Instructions
cd rose
PREFIX=`pwd`
module unload netcdf
module unload ncarcompilers
module load gnu/9.1.0
export CXX=$(which $CXX)
BOOST_ROOT="/glade/u/home/skylarfn/rose/boost_1_72_0/1.72.0/ins
tall"
cd boost_1_72_0/
./bootstrap.sh --prefix="${BOOST_ROOT}"
--with-libraries=chrono,date_time,filesystem,iostreams,program_option
s,random,regex,serialization,system,thread,wave
./b2 -std=c++11 -sNO_BZIP2=1 install
allows it to find the crt1.o and crti.o files
LIBRARY_PATH=/usr/lib64/:$LIBRARY_PATH
LD_LIBRARY_PATH=/usr/lib64/:$LD_LIBRARY_PATH
export LIBRARY_PATH
export LD_LIBRARY_PATH
export
LD_LIBRARY_PATH="/usr/lib64/jvm/java-1.8.0-openjdk-1.8.0/lib:$L
D_LIBRARY_PATH"
export
LD_LIBRARY_PATH="/usr/lib64/jvm/java-1.8.0-openjdk-1.8.0/jre/lib/am
d64/server:$LD_LIBRARY_PATH"
export
LD_LIBRARY_PATH="${BOOST_ROOT}/lib:$LD_LIBRARY_PATH"
./build
Mkdir ../build
Cd ../build
../rose-release/configure --prefix="${PREFIX}/install"
--enable-languages=c,c++,fortran
--with-boost="/${BOOST_ROOT}"
module load gnu/10.1.0
Make core -j10
Make install-core -j10
Make check-core -j10
export ROSE_SRC=${PREFIX}/rose-release
export ROSE_INSTALL=${PREFIX}/install # example
/data/rose/install
export PATH=${ROSE_INSTALL}/bin:${PATH}
export
LD_LIBRARY_PATH=${ROSE_INSTALL}/lib:${LD_LIBRARY_PATH}

Analyzing the Fortran Compiler

Points of Interest
- Examine what Fortran loses when it is parsed

through the compiler
- Through this we can find out what Fortran needs in

order to make a good copy of the original file.

Compiling Fortran Files
The compiler loses the following elements of
the original files:

● Line indentation/spaces within lines
● Line breaks within single line of code
● Smaller comment blocks that occur

within chunks of code
● Additionally, some functions are replaced

by mathematical symbols (i.e. the LT
function is replaced by the < symbol)

● Adds double-colon syntax “::” to all
variable declarations

EXAMPLE:

Original test2008_53.f90
! This is an error since the function is assigned an implicit type
! and the declaration of the return type using the older syntax does
! not reset the type of the function.
function foo2()
 integer foo2
 foo2 = 1
end function

Rose compiled test2008_53.f90
! This is an error since the function is assigned an implicit type
! and the declaration of the return type using the older syntax does
! not reset the type of the function.
 FUNCTION foo2()
INTEGER :: foo2
foo2 = 1
END FUNCTION

Why is this happening?

- When unparsing, ROSE has the option to use a
UnparseFormatHelp object, which can contain info
on how to insert spacing/indentation to maintain
formatting, but otherwise it defaults to a
standardized format (not usually consistent with
the original file formatting)

- Currently, when unparsing fortran files, the
UnparseFormatHelp object is null, so there is no
info being passed along to help with formatting

Rewrites
- While I didn’t have time to handle all the formatting

inconsistencies, I am rewriting unparse_format.C so that
it preserves indentation.

- Each line has an Sg_File_Info object associated to it.
- Sg_File_Info contains the number of characters on a

line, and the associated line number.
- unparse_format.C doesn’t have a copy of the original

line of code.
- Rewrite: pass the original line of code to

unparse_format.C to unparse_format.C to compare with
the parsed version.

- Match formatting by comparison.

Conclusion/What’s Next?

What Comes After

- Next Steps: solve the remaining formatting errors in the
Fortran Compiler. The most pressing issue is probably
the occasional loss of comments, since these are often
integral to understand the meaning of the code.

- My work provides a baseline for formatting and parsing
through Fortran files and creating a usable
Fortran-aware backend. Additionally, this work can be
applied to other Fortran-based tools, like Fortran to C
translation.

Thank You!

Thanks to the SIParCS program, and to my mentors Dan
Nagle and Davide del Vento for all the help and support over

the summer.

