Evaluating Two Approaches to Automated Code Refactoring

Presented By - Shivani Singh (Boise State University) Mentors : John Dennis & Brian Dobbins

ASAP/CISL/NCAR

29th July, 2020

Content Overview

- SAMURAI Application Code Overview
- Project Scope
- Problem 1 How to reduce cost of pencil calculation routines?
- Problem 2 How to integrate CUDA for SAMURAI Application Code?
 - Conclusion

SAMURAI Application Code Overview

SAMURAI Application Code Overview

 SAMURAI code performs data assimilation on observational data
Spline Analysis at Mesoscale Using Radar & Aircraft Instrumentation

SAMURAI Code Overview (contd..)

ORIGINAL VERSION

- Developed at Colorado State University
- □ Written in C++ with OpenMP directives
- □ Was very expensive to run (1 to 3 days to run on single node)
- Initially CPU only

CURRENT VERSION

- □ Its optimized version with fast operators
- □ GPU enabled with OpenAcc directives
- Runs a lot faster. About 10-20 minutes.

6

How to reduce cost of pencil calculation routines?

Dependent of the second second

How to reduce cost of pencil calculation routines?

D How to integrate CUDA for SAMURAI application code?

Approach : Polyhedral Optimization

Its the method for automatically optimizing and parallelizing sequential programs through static analysis

Approach : Polyhedral Optimization

"Program Analysis" : intend to construct the dataflow graphs.

SIZE : KINDEX() SIZE : 1 kGammaL_0 kDim_0	SIZE : 1 SIZE : 1 m_0 k_0	SIZE : 1 kRankMax_0	SIZE : 1 var_0	SIZE : 1 tmp_1	SIZE : kDim kB_1
Line# 912 S5 : tmp += kGammaL[KINDEX(kDim * m + k,kRankMax*kDim,var)] * kB[k];					
	tmp_2	SIZE : 1			

Approach : Polyhedral Optimization

For "Program Analysis" : Constructed dataflow graph

SIParCS2020

NCAR

Approach : Polyhedral Optimization

- **Program Analysis**
- intended to construct the dataflow graphs
- dataflow graph not efficiently handling complexity of pencil calculation subroutine
- time constraint issue to continue further
- Apply Transformation

Code Generation

How to reduce cost of pencil calculation routines?

Decision How to integrate CUDA for SAMURAL application code?

Approach : CUDA Programming

- Parallel computing platform and programming model for GPU
- Steps to implement -
 - 1. Learn CUDA programming
 - 2. Write a sample CUDA program
 - 3. Implement the CUDA for targeted code section

NCAR

Approach : CUDA Programming Steps to implement -Learn CUDA programming Write a sample CUDA program Implement the CUDA for targeted SAMURAI code section - choose a part of subroutine to run on gpu - wrote the kernel code for that section and linked it to original code - build the code for CPU and collected the results. - build the code for GPU and its giving the similar results as the CPU version, it requires further optimization

Approach : CUDA Programming

Steps to implement -

- Learn CUDA programming
 - Write a sample CUDA program
- Implement the CUDA for targeted
- SAMURAI code section

Conclusion

20

Conclusion

How to reduce cost of pencil calculation routines?

We need to improve our handling of complex dataflow graphs to better accommodate complex codes like Samurai

How to integrate CUDA for SAMURAI code application?

Additional work needed to better understand how to convert existing OpenACC code to CUDA model Further work needed on performance analysis and optimization

Conclusion

Polyhedral Optimization

We need to improve our handling of complex dataflow graphs to better accommodate complex codes like Samurai

Additional work needed to better understand how to convert existing OpenACC code to CUDA model Further work needed on performance analysis and optimization

Thank You

John Dennis (Mentor) - <u>dennis@ucar.edu</u>

Rrian Dobbins (Mentor) - <u>bdobbins@ucar.edu</u>

SIParCS Program - AJ Lauer, Virginia Do, Jerry Cyccone Jess Hoopengardner - <u>siparcs@ucar.edu</u>

Cathie Olschanowsky (Graduate Advisor) -

catherineolschan@boisestate.edu

Shivani Singh Email : <u>shivanisingh@u.boisestate.edu</u> LinkedIn : ShivaniSingh-BSU

NCAR