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Introduction
● Model analysis is traditionally done on CPUs

● Model analysis is often embarrassingly parallel and 
compute intensive

● These types of tasks are well suited for GPU 
acceleration

● FastEddy® is a GPU-based large eddy simulation 
(LES) model developed in RAL, which produces large 
datasets  

● Using GPUs for FastEddy® analysis potentially 
reduces I/O and helps create a faster process of 
analysis for the science team
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Video courtesy of Dr. Jeremy Sauer, NCAR RAL 



Project Goals

1. Become familiarized with the 
architecture of GPUs

2. Perform FastEddy® data analysis on 
GPUs  
a. Single GPU execution
b. Multi-GPU execution

3. Prototype a simplified GPU 
acceleration of the data science phase
a. Accelerate data analysis on GPUs to 

match the high-speed data production 
on GPUs
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Work Progress

Learning Single GPU Multi-GPUsEnvironment setup
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Initial Setup

Setting up environment

• Conda environment

• Package installation

• JupyterLab extensions

Learning

• NVIDIA Courses about RAPIDS

• Cupy, CuDF, CuGraph, and Dask



Libraries
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● Cupy is a python library to do element-wise array operations on GPU
○ Analogous to numpy on CPU

● Cupy simplifies GPU acceleration process
● Cupy preserves data structures

Cupy

Dask

● Dask schedules tasks for parallelism and distributes the workload for you
● Dask uses lazy evaluation and thus optimizes load and store of data
● Dask works with xarray, cupy, numpy, pandas, cudf, etc

JupyterLab

● JupyterLab is a web-based interactive development environment (IDE)
● JupyterLab supports dask lab extensions to monitor work processes



System Details

● Up to 384 GB DDR4-2666 memory per node
● 2 18-core 2.3-GHz Intel Xeon Gold 6140 (Skylake) processors per node
● 2 TB local NVMe Solid State Disk
● 1 Mellanox ConnectX-4 100Gb Ethernet connection (GLADE, Campaign Storage, external 

connectivity)
● 1 Mellanox ConnectX-6 HDR100 InfiniBand link
● 1 NVIDIA Quadro GP100 GPU 16GB PCIe on each of 8 nodes
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NCAR Casper Supercomputer
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Dask Execution Workflow
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Dask Working Example: Scheduler, Workers, & Delayed Objects

cluster = SLURMCluster(cores=1, processes=1, walltime='01:00:00', 
scheduler_options={"dashboard_address" :'0.0.0.0'},
extra=['--resources GPU=1'],
job_extra=['--constraint=gpu','--account=ntdd0002',
'--reservation=TDD_2xgp100','--mem=0'],
env_extra=['module load cuda/10.1',])

client = Client(cluster)
cluster.scale(2)

@dask.delayed
def my_func(filepath):

x = cupy.array(y)
return(x)

!squeue -u $USER -l
---------------------------------------------------------------------------------------------
Mon Jul 20 17:53:42 2020
             JOBID PARTITION     NAME     USER    STATE       TIME TIME_LIMI  NODES 
NODELIST(REASON) 
           5614085       dav dask-wor  xuecliu  RUNNING       0:02   1:00:00      1 casper06 
           5614086       dav dask-wor  xuecliu  RUNNING       0:02   1:00:00      1 casper07 
           5613902       dav     srun        xuecliu  RUNNING     37:33   6:00:00      1 casper23

Request 2 computing nodes with 1 GPU each (inside a Jupyter session) 

results = my_func(filepath)
x = results.compute()



Monitor Work with Dask Graphic Extensions
Dask-labextension + nvdashboard in a JupyterLab session
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Validation
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Results
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(1 file) (1 file)
(2 files)

● Speedup for analysis of a single file:
○ 302x for 1-thread CPU vs. 1 GPU 
○ 15.3x for 36-thread CPU vs. 1 GPU

● Speedup for analysis of two files:
○ 26.3x for 2 nodes, 36-thread CPU vs.  

2 nodes with 1 GPU on each node



Summary and Future Work
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● Cupy significantly improves and simplifies the process 
of GPU acceleration for data analysis

● Dask + cupy together facilitate data analysis on 
multi-GPUs

Summary

● Incorporate an in-situ GPU acceleration workflow in 
FastEddy®

Future work
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Thank you.

Questions?
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