Using Machine Learning to Simplify the Identification of Code Optimization

Rohith Kumar Uppala

SIParCS Intern 2018

Mentors:
Youngsung Kim and John Dennis

NCAR

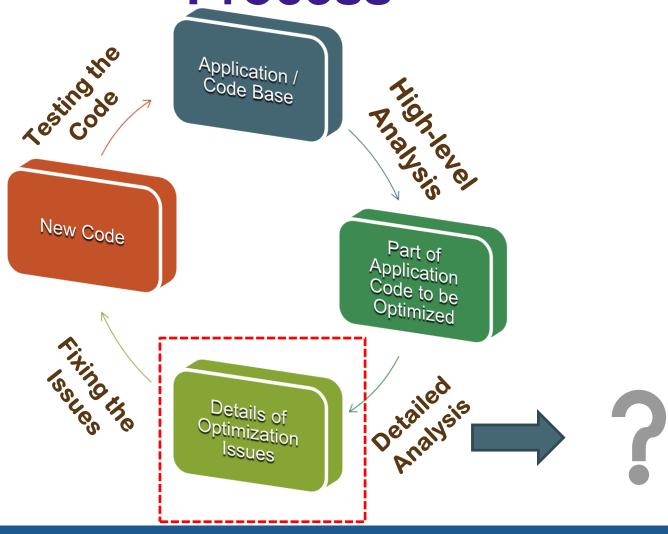
August 3, 2018



Code Optimization

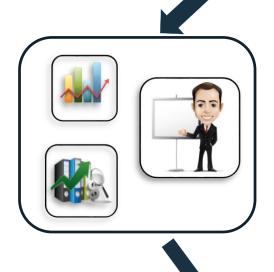
- What is code Optimization ?
 - Code optimization is any method of code modification to improve performance and efficiency
 - o It can refer to
 - Optimizing the code for efficiency
 - Reducing the lines of code for readability
- > Why?
 - Smaller size
 - Consume less memory
 - Execute more rapidly
 - Perform fewer input/output operations
 - On shared resources, end to end job throughput may increase super linearly with speedup

Optimization is an Iterative Process



Motivation

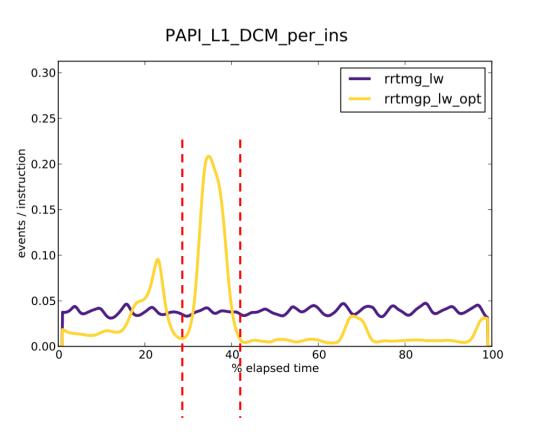
Generated Data



Machine Learning Model

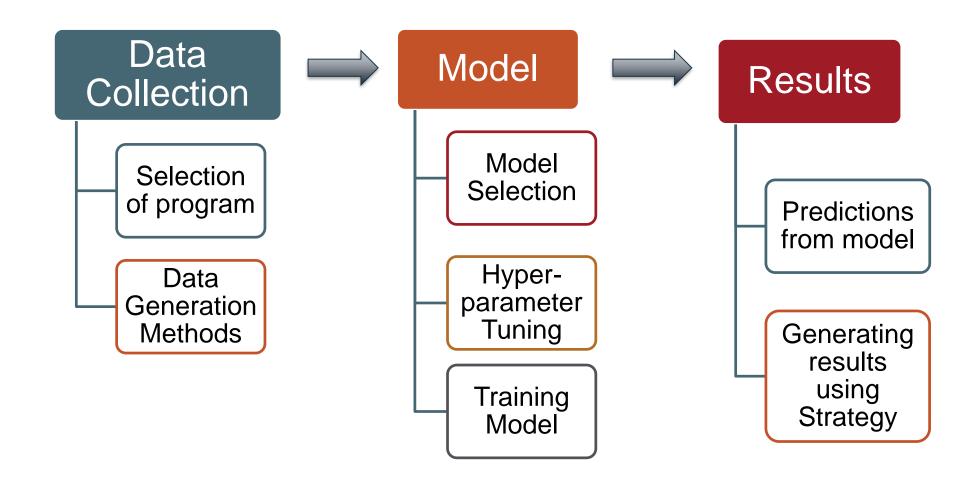
Detailed Analysis Report or Suggestions

Example

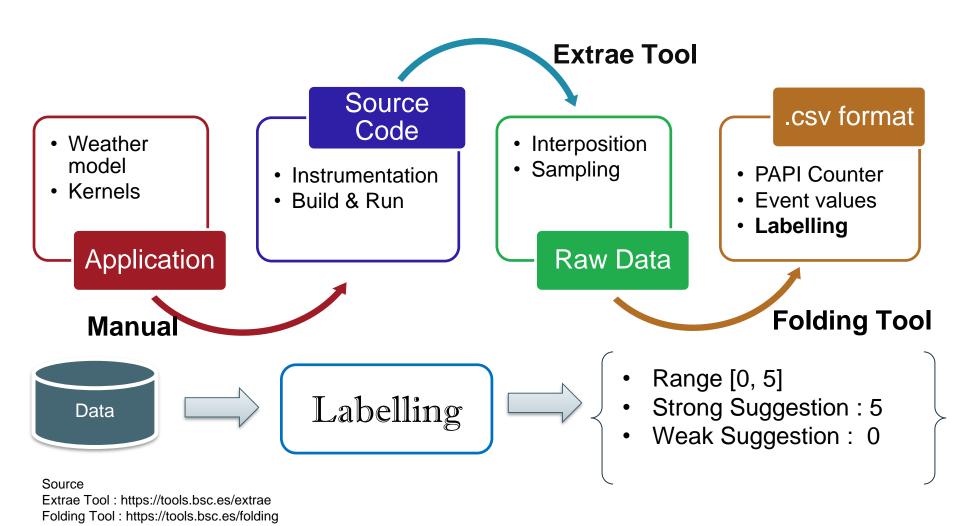


- Select the region based on events per instruction
- Map the samples in the region with Line ID and time ID
- Get the Line Number and File Name from Line ID

Project Overview

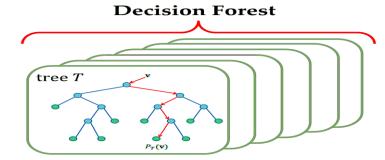


Collecting the Data



Selecting the Model

- This is a Supervised Classification and Regression task.
 - Random Forest
 - Classification and Regression Tree
 - Support Vector Machine
 - K-Nearest neighbors



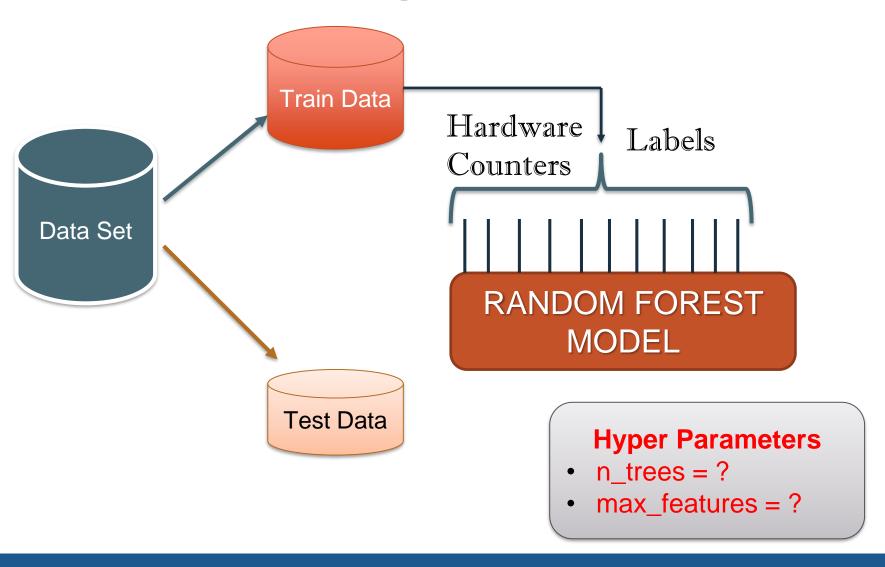
- Advantages of Random Forest over other models
 - Can handle categorical features very well
 - Less prone to overfitting
 - It can handle high dimensional spaces as well as large number of training examples
 - It works for almost any type of classification tasks

Model Comparisons

	RF	CART	kNN	SVM
Intrinsically multiclass				
 Robustness to outliers 				
 Works w/ "small" learning set 				
 Scalability (large learning set) 				
Prediction accuracy				
Parameter tuning				

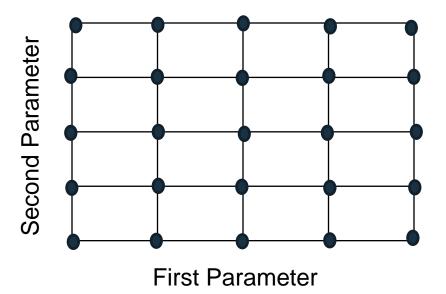
Source: An Introduction to random forests by Eric Debreuve/ Team Morpheme

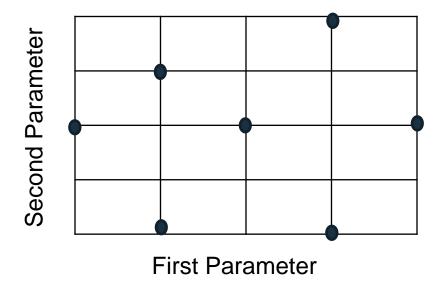
Training the Models

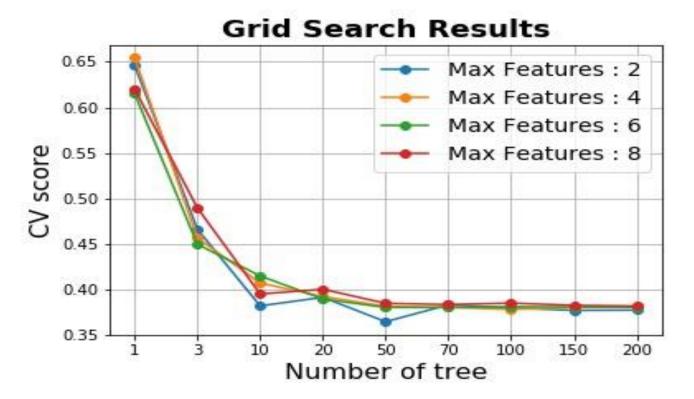


Hyper-Parameters

- Traditional Approach: manual tuning
 - With expertise in machine learning algorithms and their parameters, the best settings are directly dependent on the data used in the training and scoring
- Hyperparameter Optimization: grid vs random



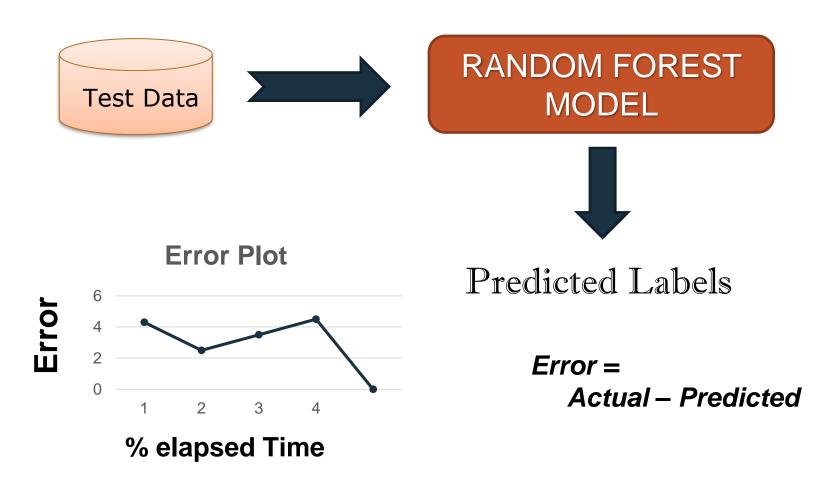




- We selected Grid Search Cross Validation because we are dealing with relatively small dataset size
- Parameters with the lowest Cross Validation score are best Parameters

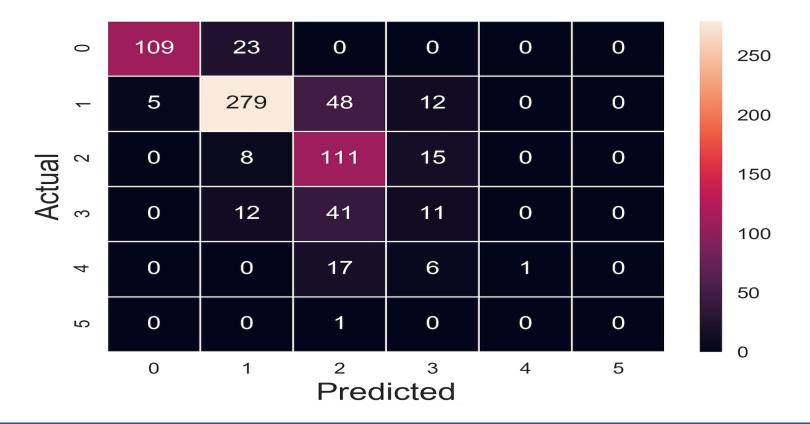
Final Parameters: Max Features.: 2 and Number of Trees.: 50

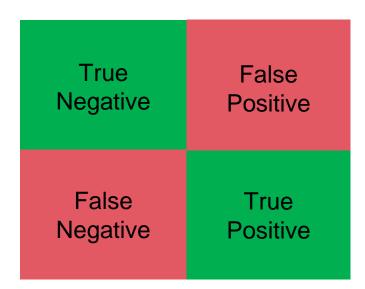
Testing the Models



Confusion Matrix

A **Confusion Matrix** is a table used to described the performance of a classification model on a set of test data for which the true values are known





Predicted

$$\mathsf{RMSE} = \sqrt{(\frac{\sum_{0}^{n}(y'-y)}{n})}$$

Using Machine Learning to Simplify

Multiple statistics are often computed from a confusion matrix for a binary classifier

$$Precision = \frac{True \ Positive}{True \ Positive + False \ Positive}$$

Recall =
$$\frac{True\ Positive}{True\ Positive + False\ Negative}$$

Results for Test Set

Root mean Square Error: 0.59

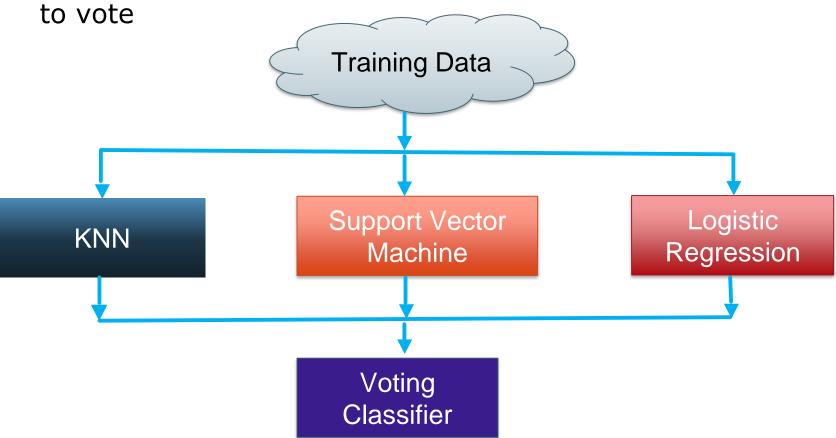
• Precision: 0.803

Recall: 0.770

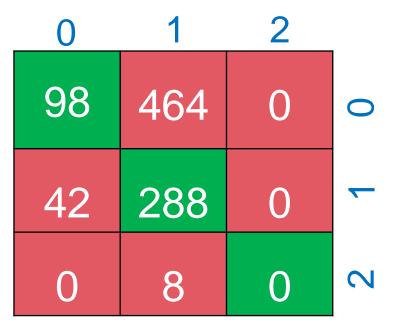
Wisdom Of the Crowd

Aggregated results > best single classifier result

Basic idea is to learn a set of classifiers and to allow them



Comparison of Classifiers



Predicted

• Precision: 0.511

Recall: 0.498

Voting Classifier

0	1	2	
100	435	27	0
6	296	28	
0	0	8	2

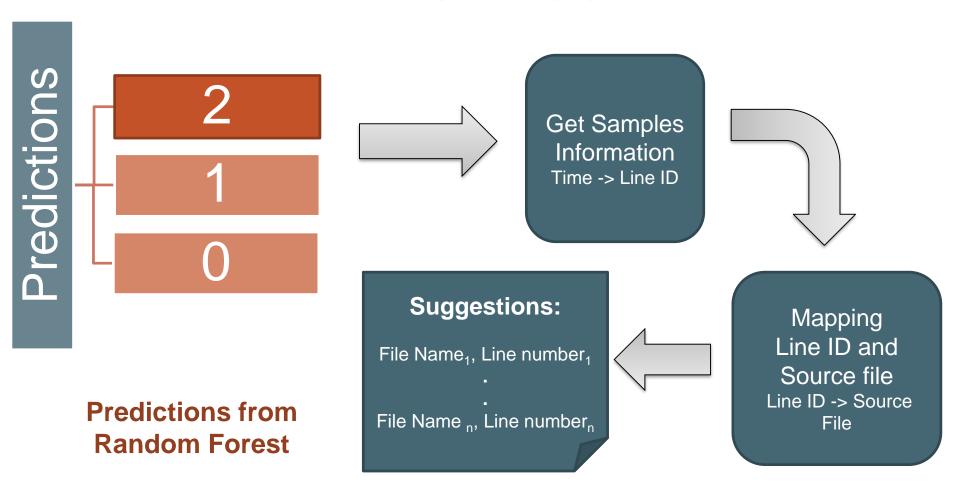
Predicted

• Precision: 0.726

• Recall: 0.47

Actual

Generating Suggestions



Results

clubb_intr.F90 , 2801

```
icnt=0
do ixind=1,pcnst
  if (lq(ixind)) then
     icnt=icnt+1
     if ((ixind /= ixq)
                             .and. (ixind /= ixcldlig) .and.&
          (ixind /= ixthlp2) .and. (ixind /= ixrtp2)
          (ixind /= ixrtpthlp) .and. (ixind /= ixwpthlp) .and.&
          (ixind /= ixwprtp) .and. (ixind /= ixwp2)
          (ixind /= ixwp3)
                             .and. (ixind /= ixup2) .and. (ixind /= ixvp2) ) then
              ptend_loc%q(i,k,ixind) = (edsclr_out(k,icnt)-state1%q(i,k,ixind))/hdtime ! transported constituents
     end if
  end if
enddo
```

lapack_wrap.F90 265

```
if (kind(diag(1)) == dp) then
 call dgtsv( ndim, nrhs, subd(2:ndim), diag, supd(1:ndim-1),
             rhs, ndim, info )
```

saturation.F90 175

```
case ( saturation_flatau )
  ! Using the Flatau, et al. polynomial approximation for SVP over vapor
  esat = sat_vapor_press_liq_flatau( T_in_K )
```

enddo

Future Work

- Currently we are generating suggestions based only on the vectorization method, we want to add other optimization techniques
- Work with other datasets and get optimal results for error, precision and recall score
- We are curious to see results from how Dimensionality Reduction can affect our prediction and speed up the process

Acknowledgements

- Youngsung Kim, Magicians, Mentor
- John Dennis, Magicians, Mentor
- Brian Dobbins
- Rich Loft
- AJ Lauer
- Elliot Foust
- Elizabeth Faircloth
- Jenna Preston

- SIParCS
- CISL
- NSF
- NCAR

Special Thanks to:

- All fellow interns
- Shuttle Drivers

Thank You

Any Questions?

Email: rohithuppala28@gmail.com