Using Deep Learning for Long-Term Weather Forecasting

Joshua Driscol

University of Washington

Karen Stengel

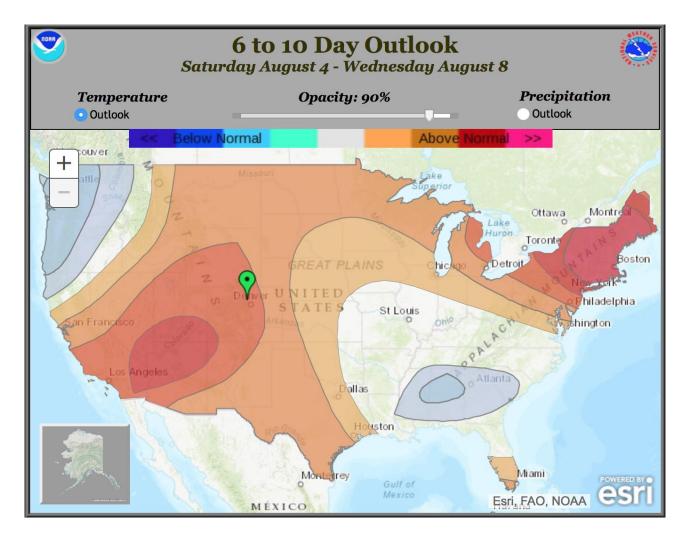
Montana State University

06/28/2018

Two main time scales for forecasting:

- Weather <= 10 day prediction, or what is currently happening in the atmosphere
- Climate is on much longer time scales, and is how we expect the atmosphere to behave
- Long-term weather: it would be useful to have accurate predictions for a sub/seasonal timescale

Background

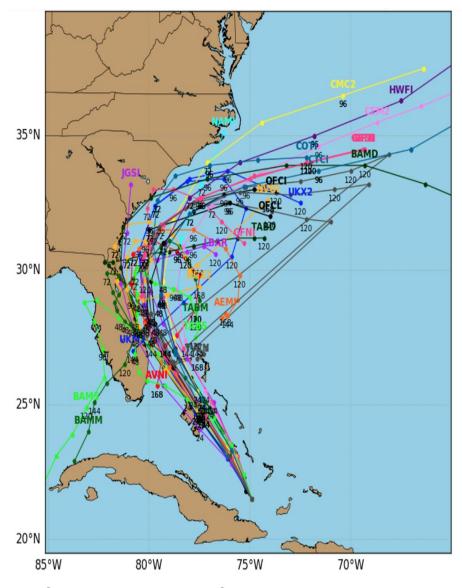


Credit: Climate Prediction Center

Background

Hurricane Matthew, 2016:

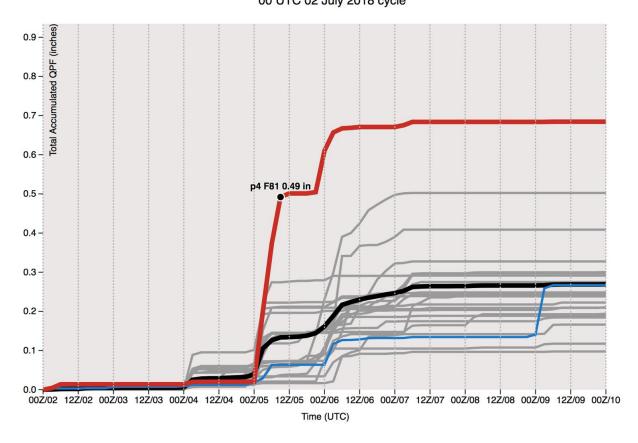
- Over \$2 billion damage
- Ended up hitting Florida



Credit: IBM Weather Company

Not Just

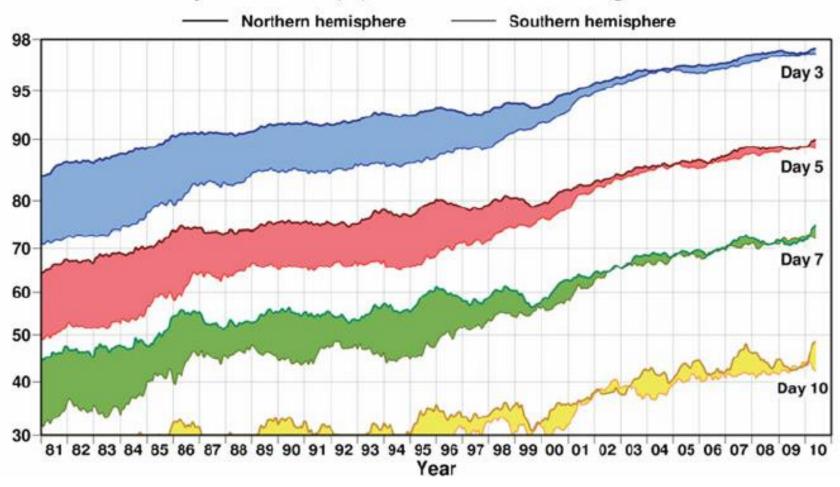
EMC's GEFS plumes for: KDEN 00 UTC 02 July 2018 cycle



Credit: Environmental Modeling Center (NCEP)

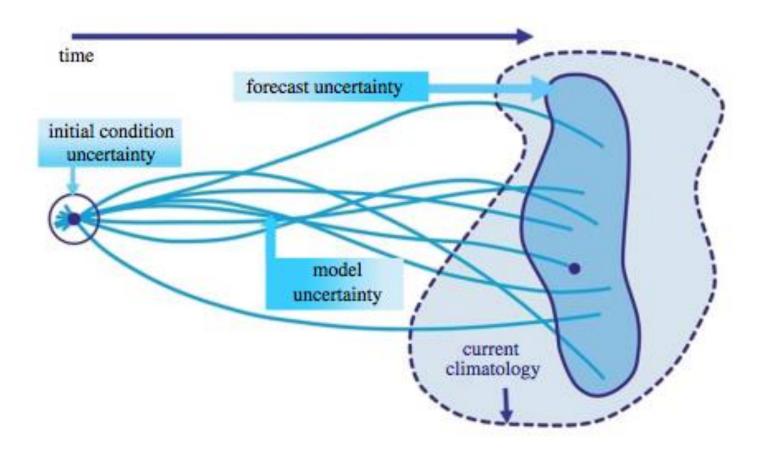
Forecast Skill

Anomaly correlation (%) of ECMWF 500hPa height forecasts



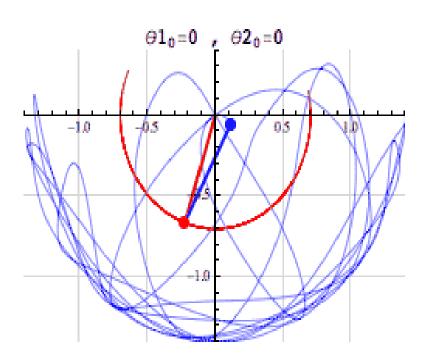
Credit: Kirtman et al, 2011

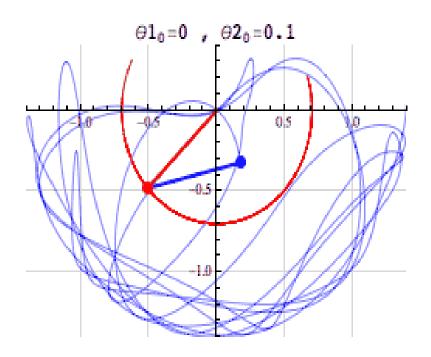
Mapping Uncertainty



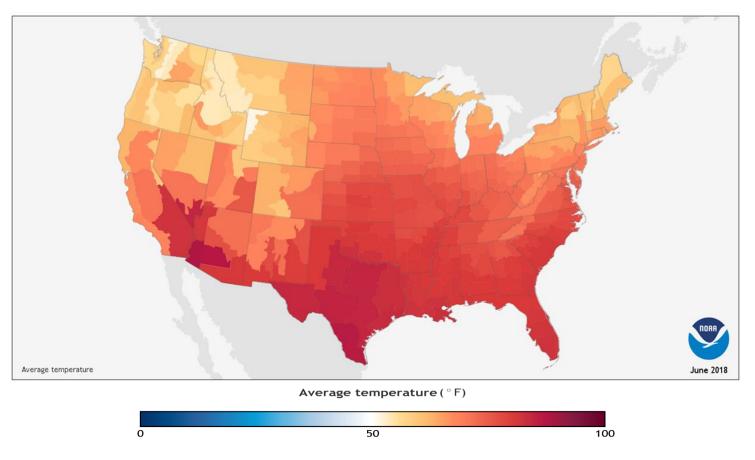
Credit: The Royal Society Publishing

Double Pendulum and Chaos

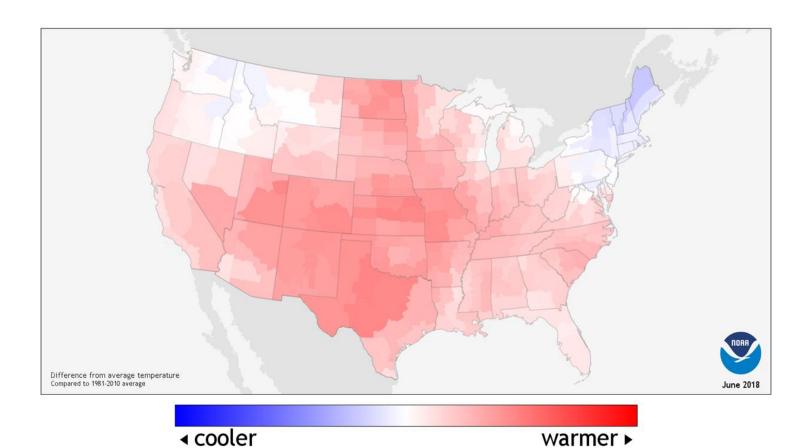




Credit: Wolfram Community



June 2018 Average Temperature, Credit: NOAA.gov

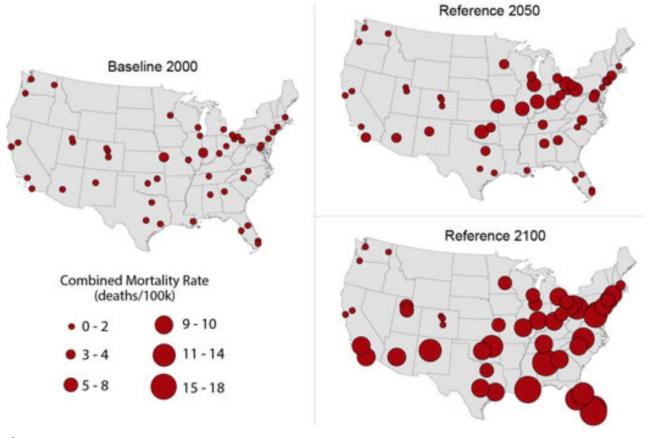


June 2018 Temperature anomalies, Credit: NOAA.gov

Credit: IEG Vu

Projected Extreme Temperature Mortality in Select Cities Due to Unmitigated Climate Change

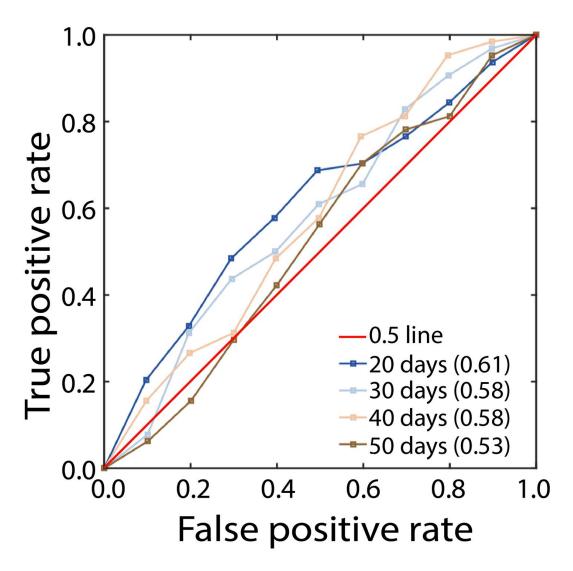
Estimated net mortality rate from extremely hot and cold days (number of deaths per 100,000 residents) under the Reference scenario for 49 cities in 2050 and 2100. Red circles indicate cities included in the analysis; cities without circles should not be interpreted as having no extreme temperature impact.



Credit: EPA.gov

Background

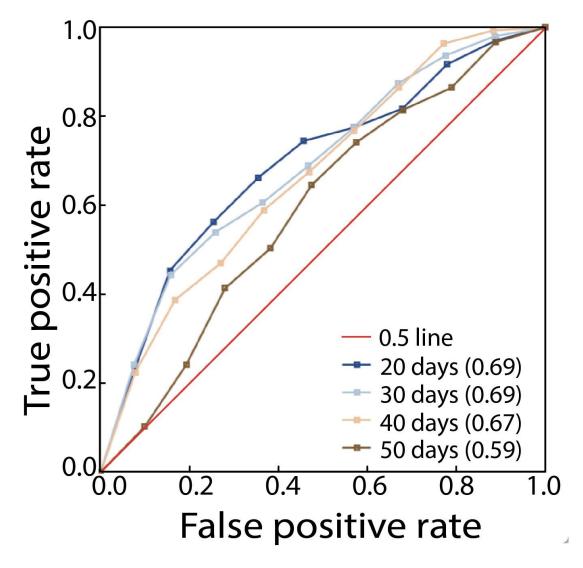
Previous work showed correlation between anomalously warm Sea Surface Temperatures (SST) and anomalously hot days in the Eastern US.



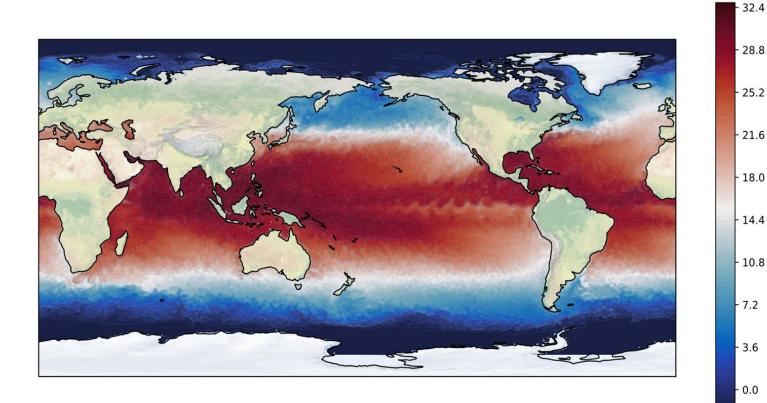
Credit: McKinnon et al, 2015

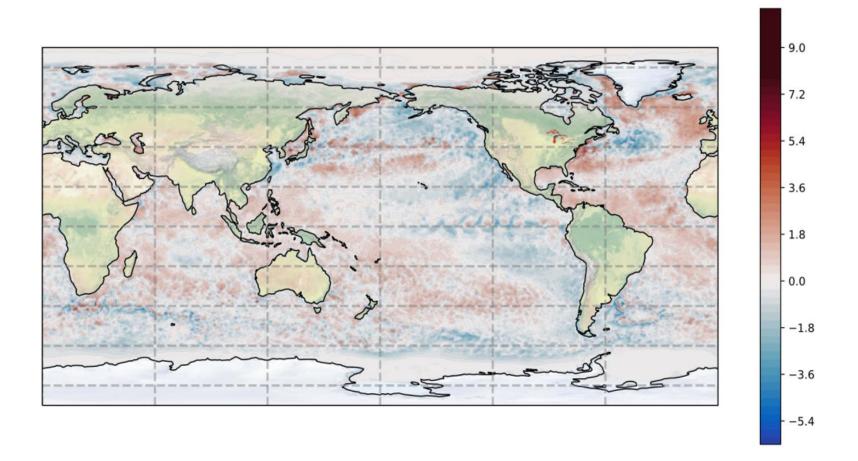
Background

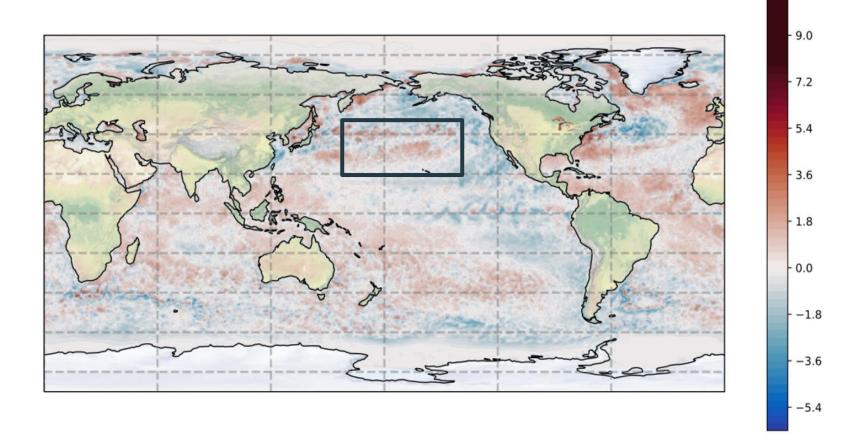
Previous work showed correlation between anomalously warm Sea Surface Temperatures (SST) and anomalously hot days in the Eastern US.

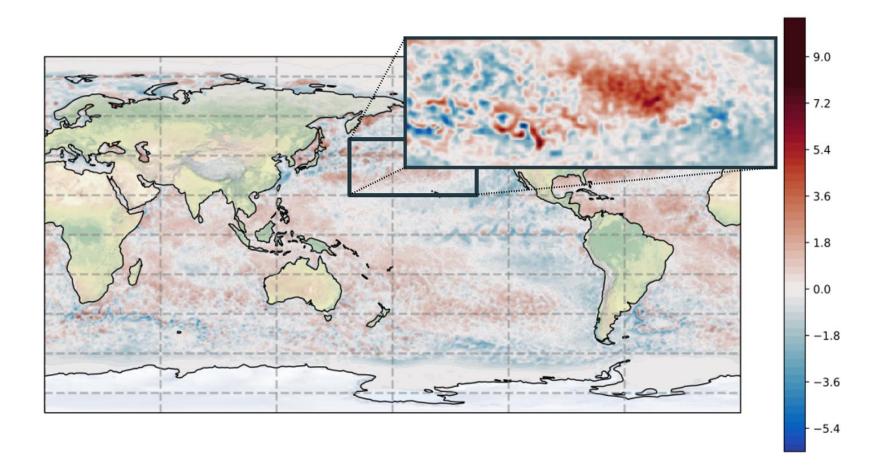


Credit: McKinnon et al, 2015

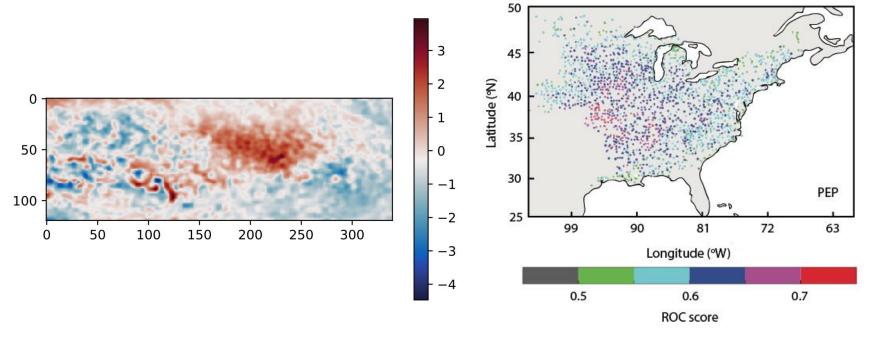






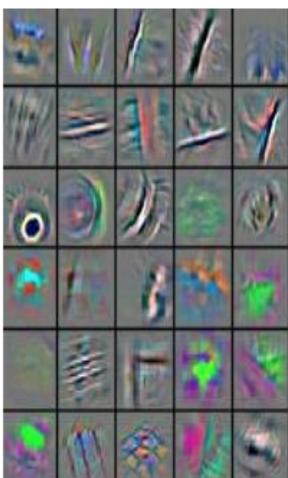


Input and Output



Credit: McKinnon et. al 2015 [edited for clarity]

Why Neural Networks?



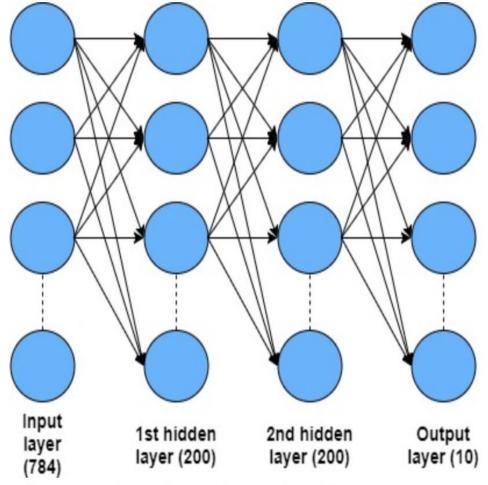
Credit: Fast.ai

Dense Net

- Universal FunctionApproximators
- Can really (over)learn
 anything with enough

 layers and neurons

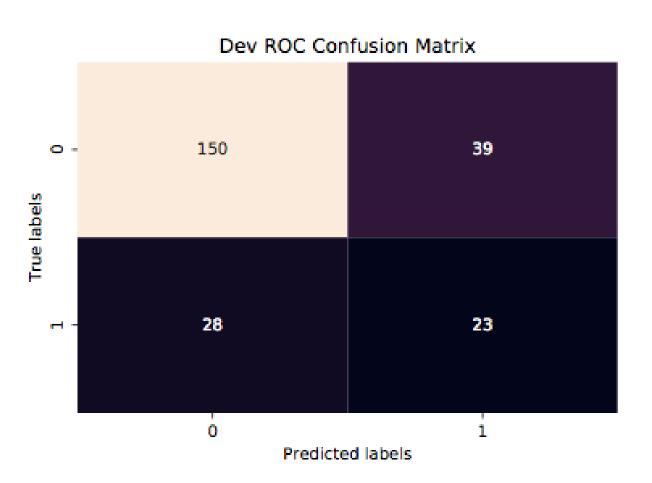
Credit: Wikipedia



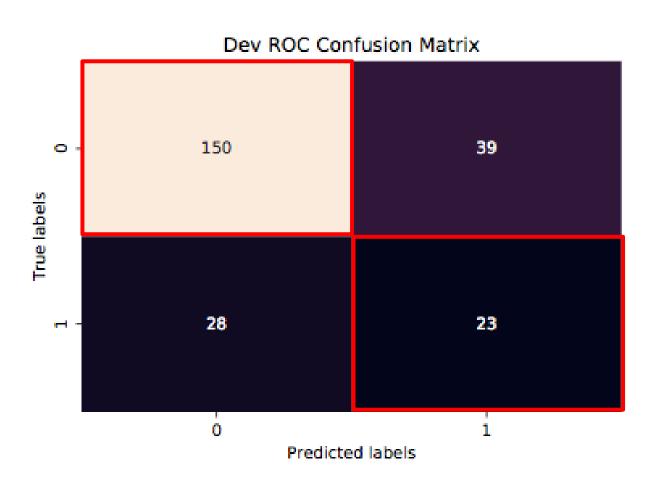
Fully connected neural network example architecture

Credit: Adventures in Machine Learning

Confusion matrix for Best Model



Confusion matrix for Best Model



Acknowledgements

Davide del Vento

Negin Sobhani, Dave Stepaniak, Alessandro Fanfarillo

AJ Lauer, Cecilia Banner, Elliot Foust, Jenna Preston

Molly Winslow

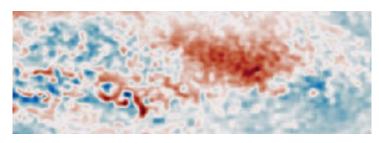
UCAR/NCAR

SIParCS, CISL

NOAA ESRL

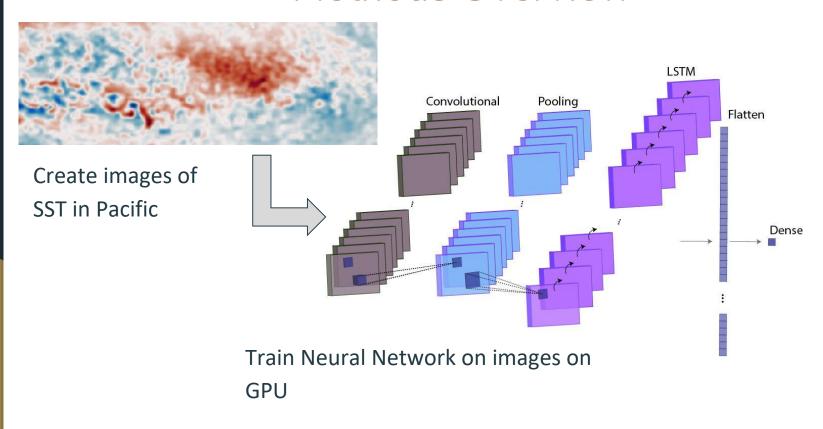
NSF

Methods Overview

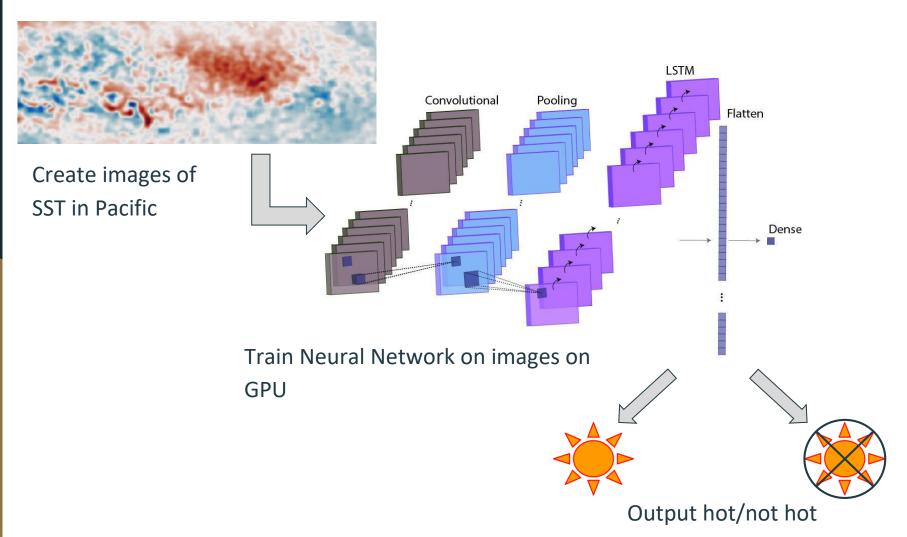


Create images of SST in Pacific

Methods Overview



Methods Overview



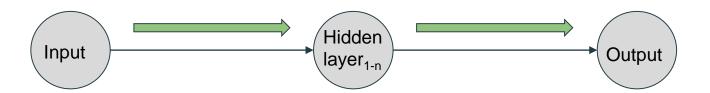
Why Use a GPU?

Due to differences in architecture, GPUs trained the Networks faster with more accuracy than the CPUs.

	Average ROC score	Seconds/Epoch
2.6-GHz Intel XeonE5-2670 CPU	0.44	5.48
NVIDIA K80 GPU	0.55	0.89
Average Increase	11%	615%

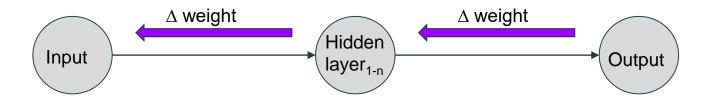
Basic steps in deep learning

- Forward propagation
 - O Pass input values forward through the network



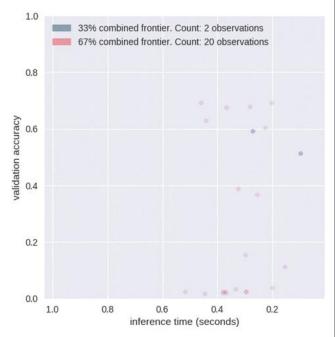
Basic steps in deep learning

- Forward propagation
 - Pass input values forward through the network
- Backward propagation
 - Adjust weights between neurons
 - minimize loss function



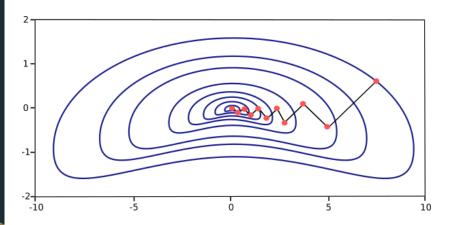
Basic steps in deep learning

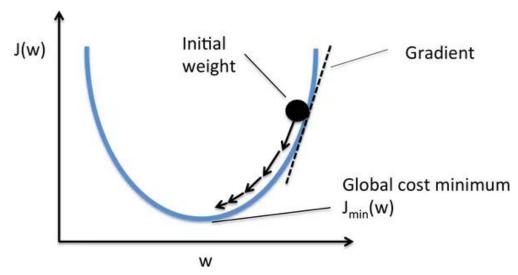
- Forward propagation
 - Pass input values forward through the network
- Backward propagation
 - Adjust weights between neurons
 - minimize loss function
- Hyperparameter optimization
 - Change values such as learning rate and momentum (used in Backward propagation)
 - O Can help minimize the loss function



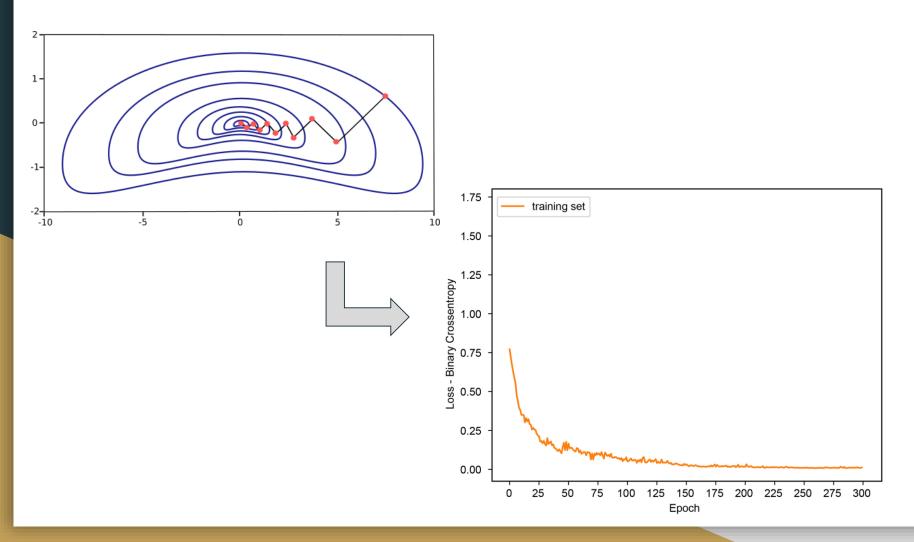
Credit: Nvidia

Loss Function

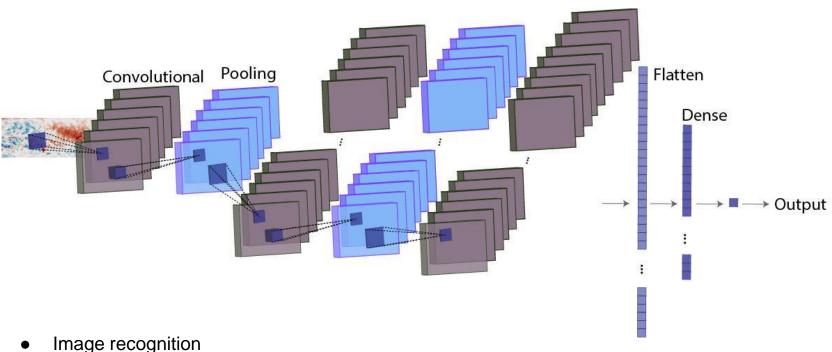




Loss Function



Convolutional network



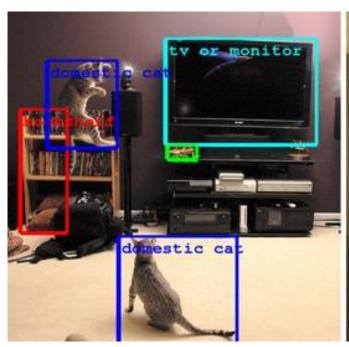
- Image recognition
- Video Analysis
- Training AI agents to play games
- Facial recgnition

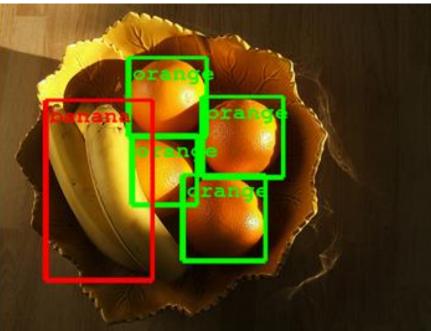
Convolution

30	3,	22	1	0
02	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

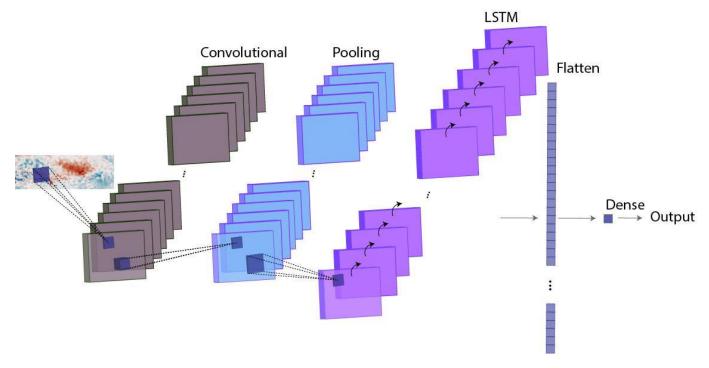
12	12	17
10	17	19
9	6	14

Image Recognition Example





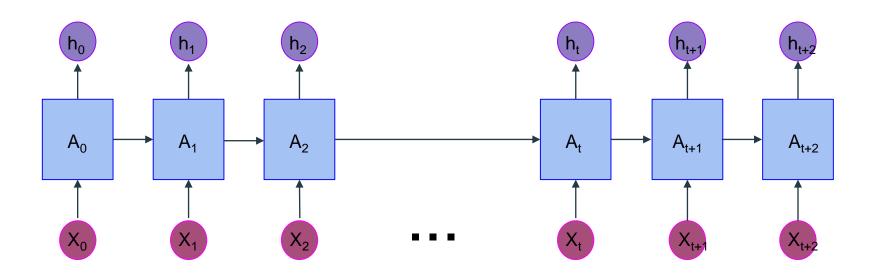
Long Short Term Memory (LSTM) Network



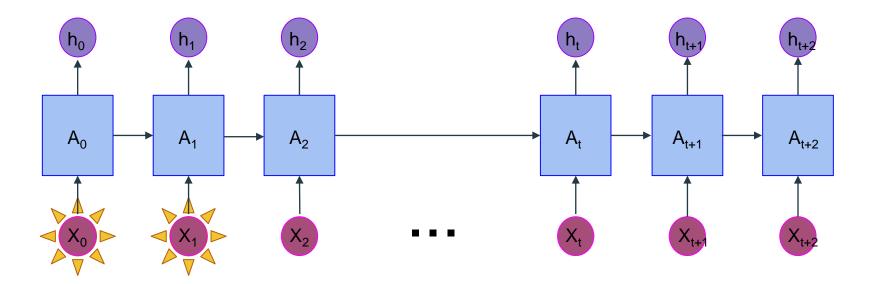
- Time series prediction
- Speech recognition
- Rhythm learning
- Music composition

- Grammar learning
- Handwriting recognition
- Human action recognition

LSTM layer

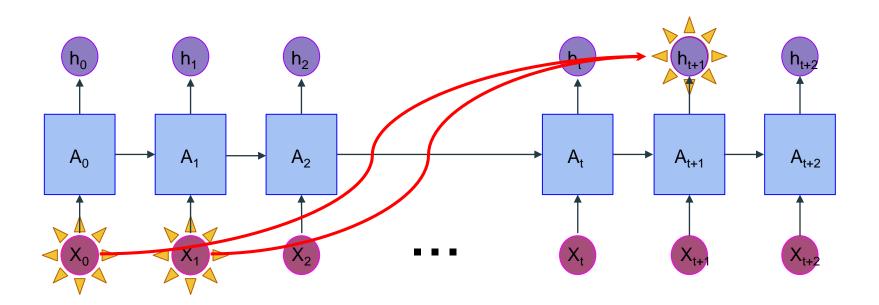


LSTM layer



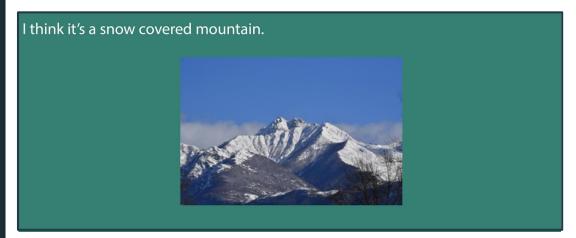
LSTM layers can manage long-term dependencies.

LSTM layer



LSTM layers can manage long-term dependencies.

LSTM example: Image Captioning



LSTM example: Image Captioning

I think it's a snow covered mountain.

I think it's a man wearing a hat and sunglasses talking on a cell phone.

https://www.captionbot.ai/

LSTM example: Image Captioning

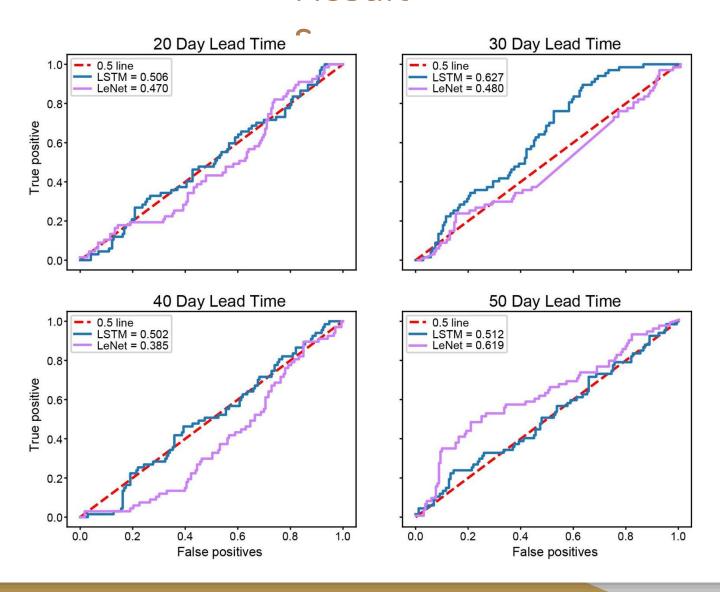
I think it's a snow covered mountain.

I think it's a dog sitting in front of a fence.

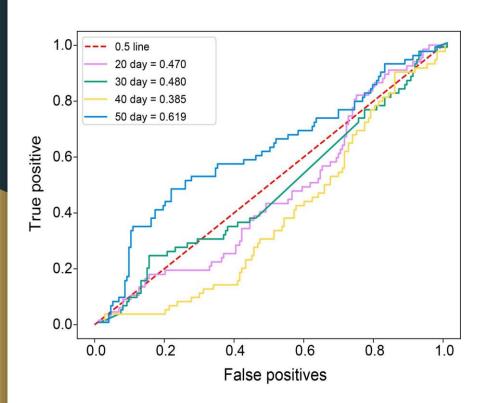
I think it's a man wearing a hat and sunglasses talking on a cell phone.

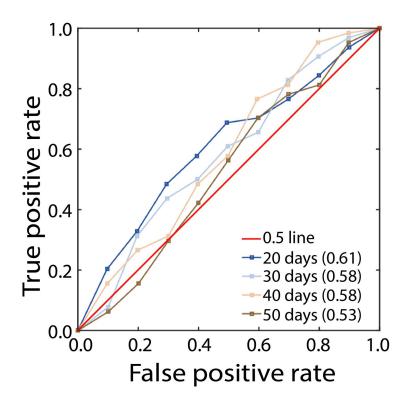
https://www.captionbot.ai/

Result

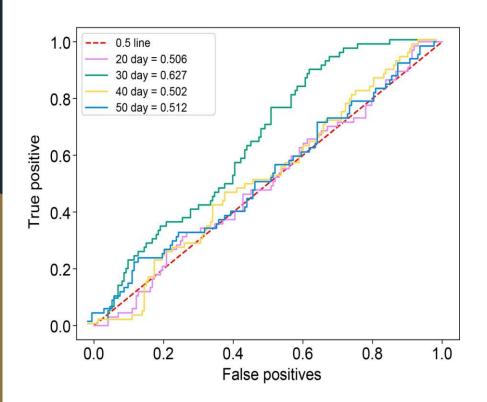


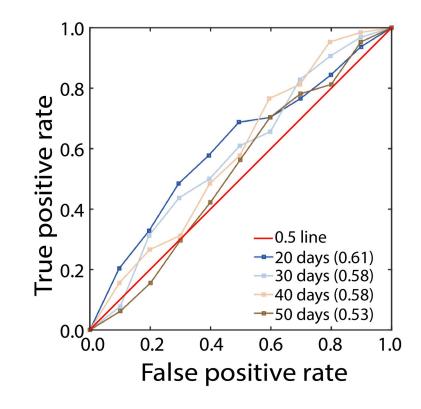
Convolutional Net ROC





LSTM ROC





Conclusions

- GPUs were faster at training both Networks than CPUs
- The LSTM network performed better overall than the LeNet network
- The LSTM network predicts better than random chance but is only significantly better for the 30 day lead time

Future Work

- Recreate McKinnon's week long prediction
- Finish optimizing networks for better ROC scores
- Additional architectures

Acknowledgements

Davide del Vento

Negin Sobhani, Dave Stepaniak, Alessandro Fanfarillo

AJ Lauer, Cecilia Banner, Elliot Foust, Jenna Preston

UCAR/NCAR

SIParCS, CISL

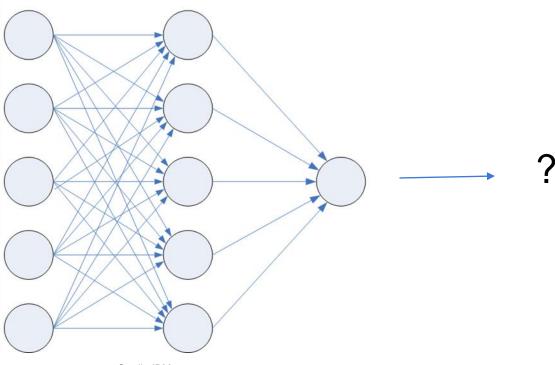
NOAA ESRL

NSF

Papers Cited

- McKinnon et. al 2015. Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures
- Gao Huang et al. "Snapshot Ensembles: Train 1, get M for free". In: CoRR
 abs/1704.00109 (2017). arXiv: 1704.00109. URL: http://arxiv.org/abs/1704.00109.
- Wojciech et al, 2015. Interactive Systems for Designing Machine Elements and Assemblies.
- Han et al, 2017. Pre-Trained AlexNet Architecture with Pyramid Pooling and Supervision for High Spatial Resolution Remote Sensing Image Scene Classification

Questions?



Credit: IBM.com

Data Formatting

- NOAA ESRL High
 Resolution SST data
- Used Unidata NetCDF module in Python
- Makes .nc file to a MFDataset

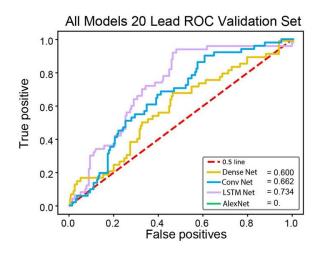
Pooling

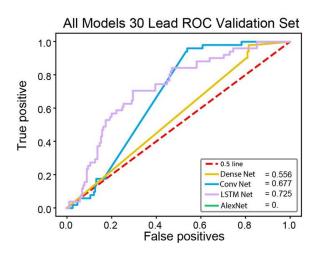
1	З	2	9
7	4	1	5
8	5	2	m
4	2	1	4

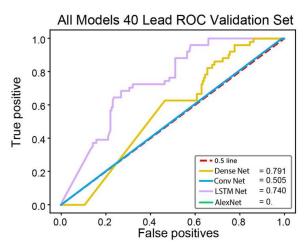
Quick explanation

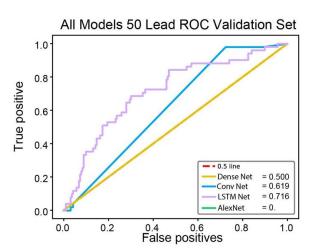
7	9
ω	

Development set









Optimized Hyperparameters

net	LeNet			
lead time	20	30	40	50
optimizer	SGD	Adam	Adam	SGD
class weight	1	1	3	1
learning rate	0.01	0.01	0.01	0.01
epochs	156	300	178	300
batch size	110	128	164	128
ROC	0.682	0.642	0.688	0.681
model choice	<u>view</u>	<u>view</u>	<u>view</u>	<u>view</u>
net	LSTM			
lead time	20	30	40	50
optimizer	SGD	Adam	Adam	SGD
class weight	3	3	6	1
learning rate	0.005	0.002	0.002	0.01
epochs	300	300	300	300
batch size	89	189	189	45
ROC	0.795	0.77	0.7	0.661