

air • planet • people

Performance Analysis and Optimizations of the Weather Research and Forecasting (WRF) Model

Dixit Patel¹, Davide Del Vento², Akira Kyle³, Brian Vanderwende², Negin Sobhani²

University of Colorado Boulder¹ - National Center for Atmospheric Research² - Carnegie Mellon University³

University of Colorado Boulder **Carnegie Mellon University**

Contents

- Introduction
- Compilers and MPI details
- Scaling Summary
- Hybrid Parallelization
- Hyperthreading Results
- Conclusion & Future work

Introduction

The Weather Research & Forecasting(WRF) Model

- Mesoscale numerical weather prediction system
- Designed for both atmospheric research and operational forecasting needs.
- Used by over 30,000 Scientists around the world.

Cheyenne Supercomputer

- 4032 dual-socket nodes
- 2.3-GHz Intel E5-2697v4 processors (Broadwell)
- 18 cores/socket
- 313 TB memory
- Partial 9D Enhanced Hypercube single-plane interconnect topology (25 GBps) - Mellanox EDR InfiniBand

Motivation

Reproduced from : <u>https://cvw.cac.cornell.edu/Optimization/overview</u>

Motivation

Motivation

Scaling WRF

- Motivation
 - How to optimize performance ?
 - Can I solve a problem of a given size in timely manner ?
 - How many core-hours would I need for my problem size ?

Scaling Summary

- Compilers : Intel (18,17) , GNU (6.3.0,8.1.0)
- MPI : MPT (2.18) , MVAPICH2, IMPI (2018)
- Case : Katrina 1km, Katrina 3km
- Domain :

Case Resolution	Grid Size	Total Grid Points	Time Steps (sec)	Simulation
Katrina 1km	512 x 512 x 35	262,144	6	12 Hours
Katrina 3km	800 x 900 x 35	720,000	12	12 Hours

- Physics suite = 'Conus' :
- Higher problem size makes the model unstable (CFL violations)

Scaling Summary

• All cases

Katrina Cases

Scaling Summary

- Intel 18.0.1 + SGI MPT 2.18 gives best performance
- GNU + MVAPICH2 < GNU + SGI MPT
- IMPI at high node count doesn't do well.

Scalability Summary

• Strong scaling : Keeping problem size fixed, increasing the core-count will increase performance, while the (approx.) same core-hours are consumed

Scalability Summary

• Much better Initialization and I/O due to improvements in WRF

Compiler Optimizations

- GNU : -ofast
- Intel : -xHost -fp-model fast =2
- Use Option 66 or 67 for Intel Compiler :
 - xHost -fp-model fast=2 -xCORE-AVX2
 - no-heap-arrays -no-prec-div -no-prec-sqrt -fno-common

14

- MPI (Distributed Memory) + OpenMP (Shared Memory)
- Why Hybrid ?
 - Eliminates domain decomposition at node level
 - Better Memory Coherency and less data movement within node
- Cheyenne Node Layout :

- WRF Tiling :
 - Domain decomposition to divide work

WPS Domain Configuration

air • planet • people 16

- WRF Tiling :
 - Domain decomposition to divide work
 - Domain first broken into pieces called patches

- WRF Tiling :
 - Domain decomposition to divide work
 - Domain first broken into pieces called patches
 - Each can be further sub divided for shared memory parallelism

- WRF Tiling :
 - Domain decomposition to divide work
 - Domain first broken into pieces called patches
 - Each can be further sub divided for shared memory parallelism

NCAR | WRF Benchmarks

• How many OpenMP threads and MPI tasks ?

- How many OpenMP threads and MPI tasks ?
 - 4MPI+9OMP or 6MPI+6OMP seems to work well

How many OpenMP threads and MPI tasks ?
- 4MPI+9OMP or 6MPI+6OMP seems to work well

How many OpenMP threads and MPI tasks ?
- 4MPI+9OMP or 6MPI+6OMP seems to work well

- How many OpenMP threads and MPI tasks ?
 - 4MPI+90MP or 6MPI+60MP seems to work well
 - Better Scaling than pure MPI

WRF Benchmarks

NCAR

Core Affinity/Binding

• Above runs use core affinity

Core Affinity/Binding

- Above runs use core affinity
 - Omplace -vv

Hyperthreading Results

- Hyperthreading on Cheyenne :
 - Single Core acts like two logical cores
 - Model performance was significantly reduced
 - Do not recommend using more than 36 cores per node

27

Conclusion

- We recommend running WRF with the latest Intel compiler (18.0.1) and MPT (2.18) library. It consistently gave better performance than other options.
- For intel compilation's : -xHost -fp-model fast =2 -xCore-AVX2 option turned on. For GNU, use -ofast
- For hybrid runs, thread affinity significantly affects performance. Use omplace or dplace (if you want to specify explicitly the CPU mapping)
- Hyperthreaded runs lowered model performance

Future Work

1. Investigate MVAPICH Environment settings

- 2. WRF crashes around a size of **2k** & halts at **128k** (64 nodes)
- 2. Explore different patching/tiling strategies for domain decomposition
- 3. Explore different core binding strategies for hybrid runs to understand impact on performance at high node counts.
- 4. Personal : Tools to profile application : WRF Advection Code

Acknowledgements

- Mentors :
 - Davide Del Vento
 - Brian Vanderwende
 - Negin Sobhani
 - Alessandro Fanfarillo
- Project Partner :
 - Akira Kyle
- SIParCS Team
 - AJ Lauer, Jenna Preston, Eliot Foust, Shilo Hall
 - Rich Loft
 - and fellow interns !