Using Probabilistic Machine Learning to Estimate Ocean Mixed Layer Depth

Recovery from sparse in-situ observations informed from satellite data.

Dallas Foster Oregon State University Advisors: David John Gagne, Daniel Whitt

July 29th 2020

MOTIVATION

Ocean and Earth system processes are highly sensitive to ocean surface mixed layer depth (MLD)

- water mass formation and circulation
- air-sea exchange
- Biogeochemistry

Observational data is increasingly available, but still **relatively sparse**

Existing methods perform optimal interpolation, but do not inform with satellite sea surface data.

Want to quantify the **sub-seasonal** relationship between **Sea Surface Salinity (SSS)**, **Temperature (SST)**, **Sea Level Height Anomaly (SSH)** and **MLD**

NCAR UCAR

GOALS AND QUESTIONS

NCAR

UCAR

DATA

Introduction Data Modeling Machine Learning Uncertainty Quantification Conclusion

UCAR

DATA PREPROCESSING

Preprocessing Steps:

1. Divide Data

Validate divisions

2. Calculate Climatology

- Apply rolling average
- Bin data into months
- Average over bins

3. Calculate Anomalies

- Bin data into months
- Subtract binned climatology
- Remove diurnal cycle

4. Resample

5. Interpolate

NCAR

UCAR

TERMINOLOGY

Terminology	Interpretation
Machine Learning	A framework of building and fitting nonlinear models to data.
Uncertainty Quantification	Techniques to determine how likely certain outcomes are if some aspects of the system are not exactly known.
S, T, H, x, y	Variables SST, SSH, SHA and the 2-dimensional spatial coordinates.
d_{obs} , d , σ , Σ	MLD observations (sparse grid), estimates , uncertainties (full grid).
heta, p(heta)	Model parameters and probability distribution (prior distribution).
$p(d_{obs} d, heta)$ $p(d d_{obs}, heta)$	Conditional marginal likelihood and posterior distributions . Represent the relative likelihood of the observations (estimates) given estimates (observations) and parameters.

UNCERTAINTY QUANTIFICATION

Aleatoric Uncertainty

- Inherent noise in data
- Irreducible

Epistemic Uncertainty

- Lack of knowledge, data
- Deficiency of model

Model must account for aleatoric and epistemic uncertainty

- Monte Carlo sampling of model
- Bayesian interpretation of model weights
- Specification of noise model

NCAR

GAUSSIAN PROCESS

A Gaussian Process (GP) *y*, observed at points *x* is a sample from a multivariate normal distribution,

 $y(x) \sim N(0, K(x, x'))$

K is a **covariance function** that specifies the **spatial relationships** between points

Allows us to **predict the mean and variance** of y at new points x_*

MODEL FRAMEWORK

TRADITIONAL MODELS

LINEAR MODEL

NCAR

UCAR

Trade off between **performance** and overfitting

FEED FORWARD ARTIFICIAL NEURAL NETWORK

NCAR

UCAR

- Universal function approximator
- Comprised of a series of simple nonlinear functions

$$h_i = f(Ah_{i-1} + b)$$

Surplus of parameters

PROBABILISTIC METHODS

Parameterization Methods

- Have to make a decision about the output's distribution
- Simple to implement, when possible
- Examples:
 - Least Squares Regression
 - Variational Neural Networks

Sampling Methods

- Initial distribution must be supplied
- Model must be run many times
- Examples:
 - Dropout
 - Variational AutoEncoders
 - Bayesian Neural Networks

PROBABILISTIC METHODS

 $w_{i,j} \sim N(\mu_{i,j}, \sigma_{i,j})$

W(x, y)

NCAR

NCAR

UCAR

 Can help capture epistemic uncertainty

Data Modeling Machine Learning Uncertainty Quantification Con-

RESULTS

UCAR

RESULTS

UCAR

ISSUES AND FUTURE WORK

Model Development

- Machine Learning models need
 further training
- Evaluate different parameterization of VNN, Flipout, VAE models
- Train and evaluate global models

Analysis

- Further estimate spatial resolution and accuracy of models
- Investigate temporal relationships, predictability
- Build framework for optimal assimilation of model and data

CONCLUSION

- Useful information can be extracted from surface data to estimate ocean mixed layer depths anomalies (MLD).
- Machine learning models are a promising approach to constructing models for estimating MLD.
- Simple noise parameterizations might be all that is necessary to get decent probabilistic estimates.
 - More analysis is needed!

NCAR

BAYESIAN NEURAL NETWORK (FLIPOUT)

- Parameterizes a prior noise model for each weight
- Requires double
 parameters and Monte
 Carlo sampling
 - Can help capture epistemic uncertainty

VARIATIONAL NEURAL NETWORK

- Requires even
 more parameters
- Requires
 parameterization
 of noise model
- Better captures aleatoric uncertainty.

NCAR UCAR

DROPOUT

NCAR

UCAR

- Randomly set some weights to zero
- Creates an ensemble of models
- Computationally
 inexpensive
- **Requires sampling** to generate statistics

VARIATIONAL AUTO ENCODERS

- Learns a dimension reduction of input data
- Gaussian noise parameterization

NCAR

UCAR