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MOTIVATION

Ocean and Earth system processes 
are highly sensitive to ocean 
surface mixed layer depth (MLD) 

• water mass formation and 
circulation

• air-sea exchange
• Biogeochemistry

Observational data is increasingly 
available, but still relatively sparse

Existing methods perform optimal 
interpolation, but do not inform with 
satellite sea surface data.

Want to quantify the sub-seasonal
relationship between Sea Surface 
Salinity (SSS), Temperature (SST), 
Sea Level Height Anomaly (SSH)
and MLD

https://www.gfdl.noaa.gov/oceanprocschem/
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GOALS AND QUESTIONS

Compare 
different ML
approaches

Quantify the uncertainty of 
MLD estimates

Produce maps of the MLD as a function of 
SSS, SST, SSH

On what spatio-temporal 
scales can we estimate the 

MLD reliably?

How valuable are the 
various input data for 
estimating the MLD?  

What features are not 
being resolved in the 
analysis?
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DATA

Argo float MLD data is:

– Sparse

– Non-normal

Introduction Data Modeling    Machine Learning    Uncertainty Quantification Conclusion



DATA PREPROCESSING

Preprocessing Steps:
1. Divide Data

– Validate divisions

2. Calculate Climatology
– Apply rolling average
– Bin data into months
– Average over bins

3. Calculate Anomalies
– Bin data into months
– Subtract binned climatology
– Remove diurnal cycle

4. Resample
5. Interpolate
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TERMINOLOGY

Terminology Interpretation

Machine Learning A framework of building and fitting nonlinear models to data. 

Uncertainty Quantification Techniques to determine how likely certain outcomes are if some 
aspects of the system are not exactly known. 

𝑆𝑆,𝑇𝑇,𝐻𝐻, 𝑥𝑥,𝑦𝑦 Variables SST, SSH, SHA and the 2-dimensional spatial coordinates.

𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜,𝑑𝑑,𝜎𝜎,Σ MLD observations (sparse grid), estimates, uncertainties (full grid).

𝜃𝜃,𝑝𝑝(𝜃𝜃) Model parameters and probability distribution (prior distribution).

𝑝𝑝 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑, 𝜃𝜃

𝑝𝑝(𝑑𝑑|𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜,𝜃𝜃)

Conditional marginal likelihood and posterior distributions. 
Represent the relative likelihood of the observations (estimates) given 
estimates (observations) and parameters.
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UNCERTAINTY QUANTIFICATION

Aleatoric Uncertainty
– Inherent noise in data
– Irreducible 

Model

𝑃𝑃(𝑆𝑆,𝑇𝑇,𝐻𝐻)

𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀)

Epistemic Uncertainty
– Lack of knowledge, data
– Deficiency of model

Model must account for aleatoric and epistemic uncertainty
– Monte Carlo sampling of model
– Bayesian interpretation of model weights
– Specification of noise model
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GAUSSIAN PROCESS

A Gaussian Process (GP) 𝑦𝑦, 
observed at points 𝑥𝑥 is a sample from 
a multivariate normal distribution,

𝑦𝑦 𝑥𝑥 ∼ 𝑁𝑁 0,𝐾𝐾(𝑥𝑥, 𝑥𝑥′)

𝐾𝐾 is a covariance function that 
specifies the spatial relationships 
between points

Allows us to predict the mean and 
variance of 𝑦𝑦 at new points 𝑥𝑥∗
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MODEL FRAMEWORK

Modeling Steps:
1. Generate dense MLD field

𝑑𝑑 = 𝑓𝑓 𝑆𝑆,𝑇𝑇,𝐻𝐻 + 𝜖𝜖

2. GPR to sparse field

𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀 ⋅ 𝑑𝑑 + 𝜎𝜎,
𝜎𝜎 ∼ 𝑁𝑁(0, Σ)

3. Compute loss and maximize 
weights according to 

𝑝𝑝(𝑑𝑑|𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 , 𝜃𝜃)

4. Repeat
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TRADITIONAL MODELS
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LINEAR MODEL

• Little to no spatial correlation 
between grid points

• Relatively few parameters 
required

• Trade off between performance
and overfitting

𝑆𝑆(𝑥𝑥,𝑦𝑦)

𝑇𝑇(𝑥𝑥,𝑦𝑦) 𝑑𝑑(𝑥𝑥,𝑦𝑦)

𝑑𝑑 𝑥𝑥,𝑦𝑦 =
𝛼𝛼 𝑥𝑥,𝑦𝑦
𝛽𝛽 𝑥𝑥, 𝑦𝑦
𝛾𝛾 𝑥𝑥,𝑦𝑦

⋅
𝑆𝑆 𝑥𝑥,𝑦𝑦
𝑇𝑇 𝑥𝑥,𝑦𝑦
𝐻𝐻 𝑥𝑥,𝑦𝑦

+ 𝑐𝑐(𝑥𝑥,𝑦𝑦) + 𝜖𝜖(𝑥𝑥,𝑦𝑦)

𝐻𝐻(𝑥𝑥, 𝑦𝑦)
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FEED FORWARD ARTIFICIAL NEURAL NETWORK

• Universal function 
approximator

• Comprised of a series 
of simple nonlinear 
functions
ℎ𝑖𝑖 = 𝑓𝑓(𝐴𝐴ℎ𝑖𝑖−1 + 𝑏𝑏)

• Surplus of 
parameters

𝑆𝑆(𝑥𝑥,𝑦𝑦)

𝑇𝑇(𝑥𝑥,𝑦𝑦)

𝐻𝐻(𝑥𝑥, 𝑦𝑦)

Hidden Layers

𝑑𝑑(𝑥𝑥,𝑦𝑦)
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PROBABILISTIC METHODS

Parameterization Methods
• Have to make a decision about 

the output’s distribution
• Simple to implement, when 

possible
• Examples:

– Least Squares Regression
– Variational Neural Networks

Sampling Methods
• Initial distribution must be 

supplied
• Model must be run many times
• Examples:

– Dropout
– Variational AutoEncoders
– Bayesian Neural Networks
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PROBABILISTIC METHODS
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RESULTS

Introduction Data    Modeling    Machine Learning    Uncertainty Quantification Conclusion



RESULTS
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ISSUES AND FUTURE WORK

Model Development

• Machine Learning models need 
further training

• Evaluate different 
parameterization of VNN, Flipout, 
VAE models

• Train and evaluate global models

Analysis

• Further estimate spatial resolution 
and accuracy of models

• Investigate temporal 
relationships, predictability

• Build framework for optimal 
assimilation of model and data
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CONCLUSION

• Useful information can be extracted from surface data to 
estimate ocean mixed layer depths anomalies (MLD).

• Machine learning models are a promising approach to 
constructing models for estimating MLD.

• Simple noise parameterizations might be all that is necessary 
to get decent probabilistic estimates.
– More analysis is needed!
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BAYESIAN NEURAL NETWORK (FLIPOUT)

• Parameterizes a prior
noise model for each 
weight

• Requires double 
parameters and Monte 
Carlo sampling

• Can help capture 
epistemic uncertainty

𝑆𝑆(𝑥𝑥,𝑦𝑦)

𝑇𝑇(𝑥𝑥,𝑦𝑦)

𝐻𝐻(𝑥𝑥, 𝑦𝑦)

Hidden Layers

𝑑𝑑(𝑥𝑥,𝑦𝑦)

𝑤𝑤𝑖𝑖,𝑗𝑗 ∼ 𝑁𝑁(𝜇𝜇𝑖𝑖,𝑗𝑗 ,𝜎𝜎𝑖𝑖,𝑗𝑗)
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VARIATIONAL NEURAL NETWORK

• Requires even 
more parameters

• Requires 
parameterization 
of noise model

• Better captures 
aleatoric 
uncertainty.

𝑆𝑆(𝑥𝑥,𝑦𝑦)

𝑇𝑇(𝑥𝑥,𝑦𝑦)

𝐻𝐻(𝑥𝑥, 𝑦𝑦)

Hidden Layers

𝜇𝜇(𝑥𝑥,𝑦𝑦)

ln𝜎𝜎(𝑥𝑥,𝑦𝑦)

𝑑𝑑 𝑥𝑥,𝑦𝑦 ∼ 𝑁𝑁( 𝜇𝜇 𝑥𝑥, 𝑦𝑦 ,𝜎𝜎 𝑥𝑥,𝑦𝑦 )

Introduction Data    Modeling    Machine Learning    Uncertainty Quantification    Conclusion



DROPOUT

• Randomly set some 
weights to zero

• Creates an ensemble 
of models

• Computationally 
inexpensive

• Requires sampling to 
generate statistics

𝑆𝑆(𝑥𝑥,𝑦𝑦)

𝑇𝑇(𝑥𝑥,𝑦𝑦)

𝐻𝐻(𝑥𝑥, 𝑦𝑦)

Hidden Layers

𝑑𝑑(𝑥𝑥,𝑦𝑦)
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VARIATIONAL AUTO ENCODERS

𝑑𝑑(𝑥𝑥,𝑦𝑦)

𝑆𝑆(𝑥𝑥,𝑦𝑦)

𝑇𝑇(𝑥𝑥,𝑦𝑦)

𝐻𝐻(𝑥𝑥, 𝑦𝑦)

𝑆𝑆(𝑥𝑥,𝑦𝑦)

𝑇𝑇(𝑥𝑥,𝑦𝑦)

𝐻𝐻(𝑥𝑥, 𝑦𝑦)

Latent 
Variables
∼ 𝑁𝑁(𝜇𝜇,𝜎𝜎)

• Learns a dimension reduction of input data
• Gaussian noise parameterization

Encoder
Neural Network

Decoder
Neural Network
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