Using Git for Centralize
Distributed Version Co
Workflows - Day 3

1 April, 2016
Presenter:
Brian Vanderwende

’ @#?Site'll & Information Systems Laboratory

MATIOMAL CENTER FOR ATMOSPHERIC RESEARCH

Git jargon from last time...

e Commit - a project snapshot in a repository

e Staging area - where additions/modifications are
gathered to be packaged into a commit

e Clone - a copy of an existing repository

e HEAD - the most recent commit of the currently
checked out branch

e Rebasing - moving the starting point of a branch from
an older to a new commit in the parent branch

e Remote - an outside repository that is linked to the
current repository (can be local or on a server)

e Push/pull - send/receive commits to/from a remote

Day 3 - Workflows, Web Servers, and Submodules

1. Git workflows
a. Distributed and centralized

2. Using a web-based remote repository - Github
3. Git submodules

While Git can be used for local collaboration, it was
designed for large distributed workflows

e |n a distributed workflow, devs can clone an “official”
public repository to create private development repos.

e The developer then pushes their changes to their own
public repository, from which the official project
maintainer can pull to the “official” repo.

e Thisis also called the integrator workflow, because the
official maintainer integrates features from developers

e Implicitly provides security and redundancy

Visualizing the distributed workflow

Developer
Private = Push
— Repository - Pull/Fetch
Maintainer
Private \L
Repository Public “Fork”
\L Repository Developer
: Private
Pub]lc = Repository
Repository ¢

The maintainer is the X P:blic “Fork”
development integrator epository

Centralized workflows, involving a central
repository, are also possible with Git

e In this model, all developers have a private repository,
from which they can push features to a central
(typically networked) repository

e Similar to the Subversion workflow

e All developers are responsible for resolving commit

conflicts with other pushed changes
o There is no integrator in this model

Visualizing the centralized workflow

Central Server

Public
Repository

Developer

Private
Repository

= Push
=> Pull/Fetch

Developer

Private
Repository

Public repositories are typically created without a
working directory for obvious (?) reasons

e Use the bare option to create a repository without a
working directory:

git init --bare <repo_name>.git

e Note the .git at the end of the repository name. This
accepted convention is used when no working
directory exists.

Of course, hybrid
workflows with
distributed groups
accessing a central
server are possible
too!

Github and competitors simply provide web-
hosting and tools for Git repositories

e Provide an easy method for cross-network
collaboration as well as source distribution
e Add visual flair to the Git experience (web GUI)
e (Can beincorporated into any workflow:
o In centralized, the public repository is stored on web server,

and all developers are given push access
o In distributed, developers can store public repositories online
(including the integrator and the “official” repository)

10

You may recall, | hosted the sample repository for

this workshop on Github. Let’s explore that
process...

Earlier, | wanted to set up a public repository for
my workshop roster website project on Github

Create a new FE[}OSitDI’y
A repository contains all the files for your project, including the revision history.

Owner Repository name

vanderwb~ [roster_site '

Great repository names are short and memorable. Meed inspiration? How about fantastic-umbrella.

Description {optional)

A sample repository for our workshop roster website

O Public

“m— Anyone can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

[Initialize this repository with a README
This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing repository.

Add .gitignore: None - Add a license: None -

12

Next, | needed to push my private repository to the
public Github repository

e Git allows for HTTPS or SSH authentication. | find SSH
to be more reliable, but you do need to set up an
SSH key.

git remote add origin
git@github.com:vanderwb/roster site.git
git push -u origin master

13

A quick note about Github permissions

e By default, public repositories are open access
e Anyone can view the repository (all users have

read/pull access)

e Anyone can issue a pull-request to the repository
o This enables and follows the integrator workflow

e The owner of the repository can add collaborators

o These users have write access, meaning they can push

commits to the repository
o Collaborators enable the centralized workflow

14

What if | want to nest
one Git repository
within another?

The simplest approach is to nest the subproject
within a directory, and add to .gitignore

e FEasytosetup

AT e Repositories act
Files independently
.gitignore o Must be pushed/pulled
Folders independently
e Problem: if another
Files user clones the
superproject,

subprojects are not
cloned with it

16

We need a way to link the subproject to the

superproject without mixing their commits...

17

First, let’s think about the Subversion solution to
this problem: externals

e C(Creating an external in SVN is (relatively) easy
o Create a directory for the embedded project

o Set the directory to be an external by associating the

repository URL
o Commit the external to the superproject

e Now, whenever you update the superproject, the
external will be updated as well
e If the externalis in the same repository, any changes to

it will be included in the commit list
o If not, you have to commit changes separately

18

In Git, submodules provide some of the advantages
of externals, with a few important differences

e A submodule is a copy of a single commit from the
subproject repository, kept in a subdirectory of the
superproject repository

e The directory structure of the superproject and URL of
the subproject repository are maintained when cloning

e However, unlike SVN:externals, submodules are
locked to a single commit at any one time, and don't
automatically track the external project's HEAD

19

How do you add a submodule to a repository?

e A submodule is basically a special remote embedded
in the superproject repository. So we add it:

git submodule add [-b <branch>] <URL>

e By default, the submodule directory will have the same
name as the source repository

e A new, version controlled, file called .gitmodules stores
the mapping of the repository to the directory

e You can manually track a submodule branch using -b
o If not set, the submodule will default to the master branch

20

Use recursive cloning when copying a repository
with submodules

e To properly clone a repository with submodules, use:
git clone --recursive <source-URL> <dest-URL>

e Otherwise, you will get an empty submodule folder.
You can recover from that by running:

git submodule init
git submodule update

21

First way to update the submodule - pull the
commit tracked by the superproject

e The superproject tracks a single commit for each
subproject/submodule

e After pulling a superproject commit that points to a
newer submodule commit, update the submodule
contents using (i.e. load the commit):

git submodule update [--merge/--rebase]

e If your submodule diverges from the updates, a
merge or rebase will be required

22

First way to update the submodule - pull the
commit tracked by the superproject

Initial state Pull new Update
superproject submodule
Superproject Superproject Superproject
dj194bs chw3]91 chw3I191
Submodule Submodule
c273ab8 c273ab8

|

Subrepo
c273ab8

23

Second way to update the submodule - pull the
latest commit from the subproject branch

e The submodule is itself a remote repository
e You can pull the latest changes from the targeted
branch of the subproject by doing a remote update
git submodule update --remote

e The tracked branch can be changed as follows:

git config -f .gitmodules
submodule.<path>.branch <branch>

24

Second way to update the submodule - pull the
latest commit from the subproject branch

Initial state

Superproject
dj194bs

Update
submodule

Superproject
dj194bs

Subrepo
c273ab8

Commit to
superproject

Superproject
chw3191

Submodule
c273ab8

|

Subrepo
c273ab8

25

Changes made in the submodule must be
committed within the subproject AND superproject

e If you make modifications to the subproject, you must
commit them, and then stage and commit the
submodule itself within the superproject

subproject$ echo "TBD" > hello_gpu.f90

subproject$ git add hello_gpu.fo90

subproject$ git commit -m "Added stub file for hello world GPU program™
subproject$ cd ..

superproject$ git diff

diff --git a/subproject b/subproject

index 208f4f8..3479225 160000

--- a/lsubproject

+++ b/subproject

@@ -1+ @@

+Subproject commit 3479225ec1636dae3f29902200a8980a589c270d
superproject$ git commit -am "Updated submodule™
superproject$ git diff

Submodule pushing can be done recursively from
within the superproject

e Submodule changes must be pushed before
superproject changes!
e If you want Git to simply check for submodule changes,
and terminate the push if they are found:
git push --recurse-submodules=check

e If you want Git to first push submodule changes:

git push --recurse-submodules=on-demand

27

CAUTION: Git’s heavy focus on branches can cause
problems when submodules are introduced...

$ git checkout -b add_sub

$ git submodule add ../subproject

$ git commit -am "Added submodule”

$ git checkout master

warning: unable to rmdir subproject: Directory not empty
Switched to branch 'master’

$ git status

On branch master

Untracked files:

$ rm -rf subproject
$ git status
On branch master

nothing to commit, working directory clean

$ git checkout add_sub

$ Is subproject/

$ git submodule update

Submodule path 'subproject': checked out
'208f4f884c99ff26f012dbe36b50e3a7411af9of8’
$ Is subproject/

hello_mpi.f90 hello_serial.f90

Making life easier when using submodules

e Git aliases come in handy as many submodule
commands are long and cumbersome:

git config alias.spush ‘push
--recurse-submodules=on-demand’

git config alias.supdate ‘submodule update
--remote --merge’

e The foreach command can be used to send any
command to all submodules. For example:

git submodule foreach ‘git checkout -b <branch>’

29

Integrating a subversion repository into a Git
project using submodules requires a Git clone

e If Git, SVN, and Alien::SVN are installed, can use git-svn
to clone an SVN repository in Git. On Yellowstone:

module load git
module load git-svn
git svn clone -s <SVN-URL> <clone-path>

e Then, in the Git superproject, make the clone a
submodule using git submodule add <clone-path>

30

Updating the SVN submodule is a clunky process

e Need to resync with upstream SVN repo, pull changes
to the submodule, and update the superproject:

cd <clone_path>

git svn rebase

cd <superproject_path/subproject>

git checkout master

git pull

cd..

git add <subproject>

git commit -m “Updated submodule to vX.X"

31

Github can make the
Git/SVN transition
easler, as both
programs can interact
with Github repositories

For more information, check out man pages and:

nttps://git-scm.com/doc
Nttp://rypress.com/tutorials/git/index

nttp://nvie.com/posts/a-successful-git-branching-model/

nttps://www.atlassian.com/git/tutorials/

My contact information:

Brian Vanderwende
CISL Consulting Services Group

ML-55L (x2442)
vanderwb®@ucar.edu

33

