
Using Git for Centralized and
Distributed Version Control

Workflows - Day 3

1 April, 2016
Presenter:

Brian Vanderwende

Git jargon from last time...

2

● Commit - a project snapshot in a repository
● Staging area - where additions/modifications are

gathered to be packaged into a commit
● Clone - a copy of an existing repository
● HEAD - the most recent commit of the currently

checked out branch
● Rebasing - moving the starting point of a branch from

an older to a new commit in the parent branch
● Remote - an outside repository that is linked to the

current repository (can be local or on a server)
● Push/pull - send/receive commits to/from a remote

Day 3 - Workflows, Web Servers, and Submodules

1. Git workflows
a. Distributed and centralized

2. Using a web-based remote repository - Github
3. Git submodules

3

While Git can be used for local collaboration, it was
designed for large distributed workflows

● In a distributed workflow, devs can clone an “official”
public repository to create private development repos.

● The developer then pushes their changes to their own
public repository, from which the official project
maintainer can pull to the “official” repo.

● This is also called the integrator workflow, because the
official maintainer integrates features from developers

● Implicitly provides security and redundancy

4

Visualizing the distributed workflow

5

Maintainer

Private
Repository

Public
Repository

Developer

Developer

Private
Repository

Public “Fork”
Repository

Private
Repository

Public “Fork”
Repository

➔ Push
➔ Pull/Fetch

The maintainer is the
development integrator

Centralized workflows, involving a central
repository, are also possible with Git

6

● In this model, all developers have a private repository,
from which they can push features to a central
(typically networked) repository

● Similar to the Subversion workflow
● All developers are responsible for resolving commit

conflicts with other pushed changes
○ There is no integrator in this model

Visualizing the centralized workflow

Central Server

Public
Repository

Developer

Private
Repository

➔ Push
➔ Pull/Fetch

7

Developer

Private
Repository

Public repositories are typically created without a
working directory for obvious (?) reasons

8

● Use the bare option to create a repository without a
working directory:

git init --bare <repo_name>.git

● Note the .git at the end of the repository name. This
accepted convention is used when no working
directory exists.

Of course, hybrid
workflows with
distributed groups
accessing a central
server are possible
too!

9

Github and competitors simply provide web-
hosting and tools for Git repositories

10

● Provide an easy method for cross-network
collaboration as well as source distribution

● Add visual flair to the Git experience (web GUI)
● Can be incorporated into any workflow:

○ In centralized, the public repository is stored on web server,
and all developers are given push access

○ In distributed, developers can store public repositories online
(including the integrator and the “official” repository)

You may recall, I hosted the sample repository for
this workshop on Github. Let’s explore that

process...

11

Earlier, I wanted to set up a public repository for
my workshop roster website project on Github

12

Next, I needed to push my private repository to the
public Github repository

13

● Git allows for HTTPS or SSH authentication. I find SSH
to be more reliable, but you do need to set up an
SSH key.

git remote add origin
git@github.com:vanderwb/roster_site.git

git push -u origin master

A quick note about Github permissions

14

● By default, public repositories are open access
● Anyone can view the repository (all users have

read/pull access)
● Anyone can issue a pull-request to the repository

○ This enables and follows the integrator workflow
● The owner of the repository can add collaborators

○ These users have write access, meaning they can push
commits to the repository

○ Collaborators enable the centralized workflow

What if I want to nest
one Git repository
within another?

15

The simplest approach is to nest the subproject
within a directory, and add to .gitignore

16

● Easy to set up
● Repositories act

independently
○ Must be pushed/pulled

independently
● Problem: if another

user clones the
superproject,
subprojects are not
cloned with it

Superproject

Files

Folders

.gitignore

Subproject

Files

Files

We need a way to link the subproject to the
superproject without mixing their commits...

17

First, let’s think about the Subversion solution to
this problem: externals

18

● Creating an external in SVN is (relatively) easy
○ Create a directory for the embedded project
○ Set the directory to be an external by associating the

repository URL
○ Commit the external to the superproject

● Now, whenever you update the superproject, the
external will be updated as well

● If the external is in the same repository, any changes to
it will be included in the commit list
○ If not, you have to commit changes separately

In Git, submodules provide some of the advantages
of externals, with a few important differences
● A submodule is a copy of a single commit from the

subproject repository, kept in a subdirectory of the
superproject repository

● The directory structure of the superproject and URL of
the subproject repository are maintained when cloning

● However, unlike SVN:externals, submodules are
locked to a single commit at any one time, and don’t
automatically track the external project’s HEAD

19

How do you add a submodule to a repository?

● A submodule is basically a special remote embedded
in the superproject repository. So we add it:

git submodule add [-b <branch>] <URL>

● By default, the submodule directory will have the same
name as the source repository

● A new, version controlled, file called .gitmodules stores
the mapping of the repository to the directory

● You can manually track a submodule branch using -b
○ If not set, the submodule will default to the master branch

20

Use recursive cloning when copying a repository
with submodules
● To properly clone a repository with submodules, use:

git clone --recursive <source-URL> <dest-URL>

● Otherwise, you will get an empty submodule folder.
You can recover from that by running:

git submodule init
git submodule update

21

First way to update the submodule - pull the
commit tracked by the superproject

● The superproject tracks a single commit for each
subproject/submodule

● After pulling a superproject commit that points to a
newer submodule commit, update the submodule
contents using (i.e. load the commit):

git submodule update [--merge/--rebase]

● If your submodule diverges from the updates, a
merge or rebase will be required

22

First way to update the submodule - pull the
commit tracked by the superproject

23

Superproject
dj194bs

Submodule
aab42a3

Subrepo
aab42a3

Superproject
chw3l91

Submodule
c273ab8

Subrepo
aab42a3

Superproject
chw3l91

Submodule
c273ab8

Subrepo
c273ab8

Initial state Pull new
superproject

Update
submodule

Second way to update the submodule - pull the
latest commit from the subproject branch

● The submodule is itself a remote repository
● You can pull the latest changes from the targeted

branch of the subproject by doing a remote update

git submodule update --remote

● The tracked branch can be changed as follows:

git config -f .gitmodules
submodule.<path>.branch <branch>

24

Second way to update the submodule - pull the
latest commit from the subproject branch

25

Superproject
dj194bs

Submodule
aab42a3

Subrepo
aab42a3

Superproject
dj194bs

Submodule
aab42a3

Subrepo
c273ab8

Superproject
chw3l91

Submodule
c273ab8

Subrepo
c273ab8

Initial state Update
submodule

Commit to
superproject

Changes made in the submodule must be
committed within the subproject AND superproject
● If you make modifications to the subproject, you must

commit them, and then stage and commit the
submodule itself within the superproject

26

subproject$ echo "TBD" > hello_gpu.f90
subproject$ git add hello_gpu.f90
subproject$ git commit -m "Added stub file for hello world GPU program"
subproject$ cd ..
superproject$ git diff
diff --git a/subproject b/subproject
index 208f4f8..3479225 160000
--- a/subproject
+++ b/subproject
@@ -1 +1 @@
-Subproject commit 208f4f884c99ff26f012dbe36b50e3a7411af9f8
+Subproject commit 3479225ec1636dae3f29902200a8980a589c270d
superproject$ git commit -am "Updated submodule"
superproject$ git diff

Submodule pushing can be done recursively from
within the superproject
● Submodule changes must be pushed before

superproject changes!
● If you want Git to simply check for submodule changes,

and terminate the push if they are found:

git push --recurse-submodules=check

● If you want Git to first push submodule changes:

git push --recurse-submodules=on-demand

27

CAUTION: Git’s heavy focus on branches can cause
problems when submodules are introduced...

28

$ git checkout -b add_sub
$ git submodule add ../subproject
$ git commit -am "Added submodule"
$ git checkout master
warning: unable to rmdir subproject: Directory not empty
Switched to branch 'master'
$ git status
On branch master
Untracked files:

 subproject/

$ rm -rf subproject
$ git status
On branch master
nothing to commit, working directory clean
$ git checkout add_sub
$ ls subproject/
$ git submodule update
Submodule path 'subproject': checked out
'208f4f884c99ff26f012dbe36b50e3a7411af9f8'
$ ls subproject/
hello_mpi.f90 hello_serial.f90

Making life easier when using submodules
● Git aliases come in handy as many submodule

commands are long and cumbersome:

git config alias.spush ‘push
--recurse-submodules=on-demand’

git config alias.supdate ‘submodule update
--remote --merge’

● The foreach command can be used to send any
command to all submodules. For example:

git submodule foreach ‘git checkout -b <branch>’
29

Integrating a subversion repository into a Git
project using submodules requires a Git clone
● If Git, SVN, and Alien::SVN are installed, can use git-svn

to clone an SVN repository in Git. On Yellowstone:

module load git
module load git-svn
git svn clone -s <SVN-URL> <clone-path>

● Then, in the Git superproject, make the clone a
submodule using git submodule add <clone-path>

30

Updating the SVN submodule is a clunky process

● Need to resync with upstream SVN repo, pull changes
to the submodule, and update the superproject:

cd <clone_path>
git svn rebase
cd <superproject_path/subproject>
git checkout master
git pull
cd ..
git add <subproject>
git commit -m “Updated submodule to vX.X”

31

Github can make the
Git/SVN transition
easier, as both
programs can interact
with Github repositories

32

For more information, check out man pages and:
https://git-scm.com/doc

http://rypress.com/tutorials/git/index

http://nvie.com/posts/a-successful-git-branching-model/

https://www.atlassian.com/git/tutorials/

33

My contact information:
Brian Vanderwende
CISL Consulting Services Group
ML-55L (x2442)
vanderwb@ucar.edu

