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Git jargon from last time...
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● Commit - a project snapshot in a repository
● Staging area - where additions/modifications are 

gathered to be packaged into a commit
● Clone - a copy of an existing repository
● HEAD - the most recent commit of the currently 

checked out branch
● Rebasing - moving the starting point of a branch from 

an older to a new commit in the parent branch
● Remote - an outside repository that is linked to the 

current repository (can be local or on a server)
● Push/pull - send/receive commits to/from a remote



Day 3 - Workflows, Web Servers, and Submodules

1. Git workflows
a. Distributed and centralized

2. Using a web-based remote repository - Github
3. Git submodules
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While Git can be used for local collaboration, it was 
designed for large distributed workflows

● In a distributed workflow, devs can clone an “official” 
public repository to create private development repos.

● The developer then pushes their changes to their own 
public repository, from which the official project 
maintainer can pull to the “official” repo.

● This is also called the integrator workflow, because the 
official maintainer integrates features from developers

● Implicitly provides security and redundancy
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Visualizing the distributed workflow
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Centralized workflows, involving a central 
repository, are also possible with Git

6

● In this model, all developers have a private repository, 
from which they can push features to a central 
(typically networked) repository

● Similar to the Subversion workflow
● All developers are responsible for resolving commit 

conflicts with other pushed changes
○ There is no integrator in this model



Visualizing the centralized workflow
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Public repositories are typically created without a 
working directory for obvious (?) reasons
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● Use the bare option to create a repository without a 
working directory:

git init --bare <repo_name>.git

● Note the .git at the end of the repository name. This 
accepted convention is used when no working 
directory exists.



Of course, hybrid 
workflows with 
distributed groups 
accessing a central 
server are possible 
too!
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Github and competitors simply provide web-
hosting and tools for Git repositories 

10

● Provide an easy method for cross-network 
collaboration as well as source distribution

● Add visual flair to the Git experience (web GUI)
● Can be incorporated into any workflow:

○ In centralized, the public repository is stored on web server, 
and all developers are given push access

○ In distributed, developers can store public repositories online 
(including the integrator and the “official” repository)



You may recall, I hosted the sample repository for 
this workshop on Github. Let’s explore that 

process...
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Earlier, I wanted to set up a public repository for 
my workshop roster website project on Github
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Next, I needed to push my private repository to the 
public Github repository
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● Git allows for HTTPS or SSH authentication. I find SSH 
to be more reliable, but you do need to set up an
SSH key.

git remote add origin
git@github.com:vanderwb/roster_site.git

git push -u origin master



A quick note about Github permissions
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● By default, public repositories are open access
● Anyone can view the repository (all users have 

read/pull access)
● Anyone can issue a pull-request to the repository

○ This enables and follows the integrator workflow
● The owner of the repository can add collaborators

○ These users have write access, meaning they can push 
commits to the repository

○ Collaborators enable the centralized workflow



What if I want to nest 
one Git repository 
within another?
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The simplest approach is to nest the subproject 
within a directory, and add to .gitignore
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● Easy to set up
● Repositories act 

independently
○ Must be pushed/pulled 

independently
● Problem: if another 

user clones the 
superproject, 
subprojects are not 
cloned with it
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We need a way to link the subproject to the 
superproject without mixing their commits...
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First, let’s think about the Subversion solution to 
this problem: externals
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● Creating an external in SVN is (relatively) easy
○ Create a directory for the embedded project
○ Set the directory to be an external by associating the 

repository URL
○ Commit the external to the superproject

● Now, whenever you update the superproject, the 
external will be updated as well

● If the external is in the same repository, any changes to 
it will be included in the commit list
○ If not, you have to commit changes separately



In Git, submodules provide some of the advantages 
of externals, with a few important differences
● A submodule is a copy of a single commit from the 

subproject repository, kept in a subdirectory of the 
superproject repository

● The directory structure of the superproject and URL of 
the subproject repository are maintained when cloning

● However, unlike SVN:externals, submodules are 
locked to a single commit at any one time, and don’t 
automatically track the external project’s HEAD
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How do you add a submodule to a repository?

● A submodule is basically a special remote embedded 
in the superproject repository. So we add it:

git submodule add [-b <branch>] <URL>

● By default, the submodule directory will have the same 
name as the source repository

● A new, version controlled, file called .gitmodules stores 
the mapping of the repository to the directory

● You can manually track a submodule branch using -b
○ If not set, the submodule will default to the master branch
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Use recursive cloning when copying a repository 
with submodules
● To properly clone a repository with submodules, use:

git clone --recursive <source-URL> <dest-URL>

● Otherwise, you will get an empty submodule folder. 
You can recover from that by running:

git submodule init
git submodule update
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First way to update the submodule - pull the 
commit tracked by the superproject

● The superproject tracks a single commit for each 
subproject/submodule

● After pulling a superproject commit that points to a 
newer submodule commit, update the submodule 
contents using (i.e. load the commit):

git submodule update [--merge/--rebase]

● If your submodule diverges from the updates, a 
merge or rebase will be required
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First way to update the submodule - pull the 
commit tracked by the superproject
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Second way to update the submodule - pull the 
latest commit from the subproject branch

● The submodule is itself a remote repository
● You can pull the latest changes from the targeted 

branch of the subproject by doing a remote update

git submodule update --remote

● The tracked branch can be changed as follows:

git config -f .gitmodules 
submodule.<path>.branch <branch>
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Second way to update the submodule - pull the 
latest commit from the subproject branch
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Changes made in the submodule must be 
committed within the subproject AND superproject
● If you make modifications to the subproject, you must 

commit them, and then stage and commit the 
submodule itself within the superproject
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subproject$ echo "TBD" > hello_gpu.f90
subproject$ git add hello_gpu.f90 
subproject$ git commit -m "Added stub file for hello world GPU program"
subproject$ cd ..
superproject$ git diff
diff --git a/subproject b/subproject
index 208f4f8..3479225 160000
--- a/subproject
+++ b/subproject
@@ -1 +1 @@
-Subproject commit 208f4f884c99ff26f012dbe36b50e3a7411af9f8
+Subproject commit 3479225ec1636dae3f29902200a8980a589c270d
superproject$ git commit -am "Updated submodule"
superproject$ git diff



Submodule pushing can be done recursively from 
within the superproject
● Submodule changes must be pushed before 

superproject changes!
● If you want Git to simply check for submodule changes, 

and terminate the push if they are found:

git push --recurse-submodules=check

● If you want Git to first push submodule changes:

git push --recurse-submodules=on-demand
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CAUTION: Git’s heavy focus on branches can cause 
problems when submodules are introduced... 
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$ git checkout -b add_sub
$ git submodule add ../subproject
$ git commit -am "Added submodule"
$ git checkout master
warning: unable to rmdir subproject: Directory not empty
Switched to branch 'master'
$ git status
On branch master
Untracked files:

 subproject/

$ rm -rf subproject
$ git status
On branch master
nothing to commit, working directory clean
$ git checkout add_sub
$ ls subproject/
$ git submodule update
Submodule path 'subproject': checked out 
'208f4f884c99ff26f012dbe36b50e3a7411af9f8'
$ ls subproject/
hello_mpi.f90  hello_serial.f90



Making life easier when using submodules
● Git aliases come in handy as many submodule 

commands are long and cumbersome:

git config alias.spush ‘push 
--recurse-submodules=on-demand’

git config alias.supdate ‘submodule update 
--remote --merge’

● The foreach command can be used to send any 
command to all submodules. For example:

git submodule foreach ‘git checkout -b <branch>’
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Integrating a subversion repository into a Git 
project using submodules requires a Git clone
● If Git, SVN, and Alien::SVN are installed, can use git-svn 

to clone an SVN repository in Git. On Yellowstone:

module load git
module load git-svn
git svn clone -s <SVN-URL> <clone-path>

● Then, in the Git superproject, make the clone a 
submodule using git submodule add <clone-path>
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Updating the SVN submodule is a clunky process

● Need to resync with upstream SVN repo, pull changes 
to the submodule, and update the superproject:

cd <clone_path>
git svn rebase
cd <superproject_path/subproject>
git checkout master
git pull
cd ..
git add <subproject>
git commit -m “Updated submodule to vX.X”
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Github can make the 
Git/SVN transition 
easier, as both 
programs can interact 
with Github repositories
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For more information, check out man pages and:
https://git-scm.com/doc

http://rypress.com/tutorials/git/index

http://nvie.com/posts/a-successful-git-branching-model/

https://www.atlassian.com/git/tutorials/
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